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Motivation

■ Interbank networks are essential for liquidity management, payment settlements, and risk
diversification.
Their critical role gained prominence after the 2007–2009 GFC (‘too-connected-to-fail’).

■ Extensive literature has primarily focused on financial contagion and systemic risk, especially
during crises.
E.g., networks as shock propagation channels (Jackson & Pernoud, 2021; Acemoglu et al., 2015). But
how about their role in other crucial outcomes, such as operational performance, during stable times?

■ Networks potentially shape bank behavior through peer effects, herding, and benchmarking.
E.g., the theory by Scharfstein & Stein, (1990) or empirical evidence in Margaretic et al. (2021)
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In this paper

We investigate:

How does interconnectedness, as defined by interbank lending network structures, influence the
operational cost efficiency of banks?

■ We model interconnectedness using a network autoregressive model on the error term of a
cost function.
This captures how one bank’s cost inefficiency relates to the performance of its network peers.

■ We measure banking performance using Stochastic Frontier Analysis (SFA).
This allows us to estimate bank-specific cost technical efficiency scores.

■ We use a rich administrative dataset from Chile and a novel two-step GMM-SFA approach,
controlling for fixed effects and network dependence.
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Why should we care? (our contributions)

■ Banking networks may influence both stability and performance.
We provide novel empirical evidence on how interbank networks affect operational performance,
moving beyond the focus on systemic risk.

■ Policy Implications.
Our findings suggest that network structures are not just about risk, but also about the fundamental
operational health and efficiency of the banking sector.

■ Methodological Application.
We apply an innovative GMM-SFA framework to a multi-output banking cost function with a
time-varying network structure based on actual transaction data, not proxies.
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What do we find? (Preliminary results based on a 2016-2017 sample)

Two main takeaways:

1. Interconnectedness is associated with an improvement in banks’ cost efficiency in the Chilean
case.

− The estimated network dependence parameter is negative and significant.

− For the median bank, network interactions reduce cost inefficiency by approximately 35%
relative to its own idiosyncratic component.

This result is consistent with competitive pressures and benchmarking mechanisms.

2. Understanding network dynamics is crucial for policies aiming for an efficient and stable
banking system.

UST The CMF Annual Conference, 2025 5/ 18



Related literature

Main strands of literature:

■ We build on an extensive literature highlighting the importance of network connectedness
in the banking sector. (e.g., Acemoglu et al. 2015; Elliot et al. 2014; Glasserman & Young 2016).
We shift the focus from risk to operational performance.

■ Our work adds to the scarce literature on peer effects and herding in banking (e.g.,
Scharfstein and Stein, 1990; Margaretic et al., 2021; Gangopadhyay and Nilakantan, 2021). We
quantify outcomes beyond behavioral contagion.

■ Our approach contribute to recent GMM-SFA methods incorporating network or spatial
dependence (e.g., Kutlu et. al. 2020; Tran and Tsionas 2023; Hou et al. 2023; Chanci et al. 2024;
Silva et al. 2018). We extend this framework to a multi-output cost function with time-fixed effects.

UST The CMF Annual Conference, 2025 6/ 18



Econometric Specification

■ Canonical Translog Stochastic Cost Function (e.g., Mamonov et al., 2024):

ln(Costit) = αt + Translog(outputsit , input pricesit , quasifixed inputsit ;β) + εit

where the composite error term is εit = vit + uit , with uit ≥ 0 representing cost inefficiency.

■ We then introduce network dependence directly into the error structure (Hou et al. 2023):

εt = ρWtεt + ε̇t where ε̇t = v̇t + u̇t

ρ is the key parameter capturing average network dependence; Wt is the adjacency matrix of interbank
linkages; u̇t is the underlying network-independent inefficiency (half-normal); and v̇it is idiosyncratic
noise (normal).
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Estimation Strategy

While ML estimation is possible, it is computationally challenging with our model structure:
■ The likelihood function becomes complex with network dependencies (I − ρWt ).
■ High-dimensionality from the time-varying weights (Wt ) and fixed effects, adding significant

burden.

We employ an alternative two-step GMM estimation strategy (inspired by Hou et al. 2023,
Chanci et al. 2024):

1. First Step: Estimate Translog parameters (β) via within-time transformation (OLS, minimal
assumptions).

2. Second Step: Use the residuals from Step 1 to construct moment conditions from the
variance-covariance structure of the errors. These moments are used to estimate the network
and variance parameters (ρ, σ2

v̇ , σ
2
u̇) via GMM.

(more details)
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Data
We use a unique, confidential administrative dataset from the Chilean CMF (2008-2020).

1. Network of Interbank Obligations (Form C-18).
We construct the time-varying, row-normalized weights matrix Wt using detailed daily bilateral obligations,
exploring variations across financial instruments and maturities, as illustrated in the following network plots.

Bank Size Group: Below Median Size Above Median Size

Interbank obligations (billions $CLP): 200 400 600 800

 

(a) Total Obligations

Bank Size Group: Below Median Size Above Median Size

Interbank obligations (billions $CLP): 5 10

 

(b) Short-term Derivatives Only
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Data (cont.)
2. Bank Balance Sheets (Form MB-2).

We use monthly data, from Form MB-2 (assets, liabilities, costs, etc. for each bank) to define the variables for the
stochastic cost function (e.g., Mamonov et al. 2024; Malikov et al. 2015).

Variable Description

Outputs (y )
y1 Commercial loans
y2 Real estate loans (Mortgages)
y3 Consumer loans
y4 Securities and other investments

Inputs Prices (p)
p1 Labor price
p2 Physical capital price
p3 Price of funds

Quasi-fixed Input (z)
z1 Equity capital

Cost Variable (C) Total variable operating cost
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Core Result: Interbank connections are associated with improved cost efficiency
Baseline Model

Based on
Total Obligations

Panel A. Interconnectedness parameter
ρ -0.542 ∗∗∗

(0.112)

Panel B. Cost frontier main parameters
σν̇ 0.102 ∗∗∗

(0.011)
σu̇ 0.013 ∗∗∗

(0.005)

Controls in the Translog Cost Function Yes
Time fixed effects Yes
Observations 418

Notes: 1. The table reports the central results using total obligations. 2. The ‘Controls in the Translog Cost Function‘ row includes full second-order and interaction terms. 3. Data:
Chilean banking system, 2016m1–2017m12. 3. Standard errors (in parentheses) computed via wild bootstrap. 4. *** significant at 1%; ** 5%; * 10%.
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Post-Estimation Calculations

We next use the estimates to provide quantitative insights into how interbank relationships
influence bank operational performance (inefficiency).

■ First: We compute efficiency estimates.
As benchmark, we explore whether, despite the econometric modification, basic results are comparable
with previous findings (e.g., Cobas et al. 2024).

■ Second: We assess the importance of those network effects.
Our approach allows us to decompose total cost inefficiency for each bank into two terms:

Total Inefficiencyit = Direct (Idiosyncratic) Effectit + Indirect (Network) Effectit

(more details)
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First, Technical Efficiency: T.E. Scores are about 90%
Results for technical efficiency are comparable to those previously reported by other researchers
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(a) Kernel of the banking efficiency scores
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(b) Temporal Evolution of Efficiency Scores

Notes: The figure has two panels and presents the Distribution and Temporal Evolution of Bank Technical Efficiency Scores (2016m01–2017m12). Panel (a)
displays the kernel density estimate of technical efficiency scores pooled across all banks and months in the sample period. Panel (b) presents a time series of
monthly boxplots, illustrating the distribution of these scores for selected months. Technical efficiency scores (TEit ) are calculated as the exponential of the
negative estimated cost inefficiency term, i.e., TEit = exp(−µ̂it ).UST The CMF Annual Conference, 2025 13/ 18



Second, Quantifying the Network’s Impact:"Efficiency Gains"
Total Inefficiencyit = Direct (Idiosyncratic) Effectit + Indirect (Network) Effectit
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(a) Kernels: Idiosyncratic vs. Network Cost Ineff.
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(b) Evolution of Network-Driven Efficiency Gains

Notes: The figure has two panels. Panel (a) displays two kernel density plots. The Direct or Idiosyncratic component of cost inefficiency (red line) and the Total
component (blue line). Panel (b) presents a time series of monthly boxplots, illustrating the distribution of Efficiency Gains for selected months. Efficiency Gains
are calculated as (1 − Total Inefficiencyit/Direct Effectit ). The horizontal dashed red line indicates the overall mean value of these gains across the sample period.

UST The CMF Annual Conference, 2025 14/ 18



Robustness Checks and Potential Channels

1. Robustness via alternative definitions of network matrices:
■ Maturities (overnight, short-term, long-term)

Strongest effects observed for longer-term obligations.
■ Financial instruments (derivatives, unsecured loans, term deposits)

Clear efficiency impacts found with derivatives and unsecured exposures.

2. Potential channels (ongoing research):
■ Current results align with banks facing competitive pressures or engaging in negative

benchmarking—improving efficiency by learning from peers’ mistakes.
■ Additionally, we explore alternative network specifications (directionality from borrower-to-lender

versus lender-to-borrower and alternative normalization methods).
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Robustness Checks 1: Network Definition by Maturity
Strong effects for longer-term relationships (Suggests immediate liquidity management is not the primary channel)

Obligations Overnight/ Up to More than All Obligations
at sight one year one year (Baseline)

Panel A. Interconnectedness parameter
ρ 0.009 -0.455∗∗∗ -0.295∗∗∗ -0.542∗∗∗

(0.064) (0.115) (0.068) (0.112)

Panel B. Cost frontier main parameters
σν̇ 0.110∗∗∗ 0.101∗∗∗ 0.107∗∗∗ 0.102∗∗∗

(0.004) (0.005) (0.008) (0.011)
σu̇ 0.016∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.013∗∗∗

(0.005) (0.005) (0.004) (0.005)

Controls in the Translog Cost Function Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Observations 418 418 418 418

Notes: The ‘Controls in the Translog Cost Function’ row indicates the inclusion of all first-order, second-order, and interaction terms for outputs, input prices, and quasi-fixed
inputs as specified in the translog cost function TL(yit , pit , zit ;β

∗). Standard errors (in parentheses) computed via wild bootstrap. ∗∗∗ significant at 1%; ∗∗ 5%; ∗ 10%.
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Robustness Checks 2: Network Definition by Instrument Type

Derivatives Unsecured Term All Obligations
Only Exposures Deposits (Baseline)

Panel A. Interconnectedness parameter
ρ -0.360∗∗∗ -0.540∗∗∗ -0.372∗∗∗ -0.542∗∗∗

(0.064) (0.111) (0.117) (0.112)

Panel B. Cost frontier main parameters
σν̇ 0.107∗∗∗ 0.102∗∗∗ 0.106∗∗∗ 0.102∗∗∗

(0.013) (0.012) (0.005) (0.011)
σu̇ 0.017∗∗∗ 0.013∗∗∗ 0.019∗∗∗ 0.013∗∗∗

(0.004) (0.004) (0.004) (0.005)

Controls in the Translog Cost Function Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Observations 418 418 418 418

Notes: The ‘Controls in the Translog Cost Function’ row indicates the inclusion of all first-order, second-order, and interaction terms for outputs, input prices, and quasi-fixed
inputs as specified in the translog cost function TL(yit , pit , zit ;β

∗). Data: Chilean banking system (2016m1–2017m12). Standard errors (in parentheses) computed via wild
bootstrap. ∗∗∗ significant at 1%; ∗∗ 5%; ∗ 10%.
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Summary

■ We study the link between interbank interconnectedness and bank cost efficiency, moving
beyond the traditional focus on systemic risk.

■ We use a rich administrative dataset from Chile and a novel GMM-SFA approach to model
network dependencies.

■ We find a significant, negative network dependence. This indicates that interconnectedness,
on average, is associated with improved cost efficiency.

■ For the median bank, network effects account for a substantial reduction in cost inefficiency
(approx. 35% gain).

■ Results suggest that monitoring bank networks is crucial not just for financial stability, but
also for understanding the drivers of the sector’s fundamental operational performance.

Thanks!
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Appendix: Estimation Strategy (more info)
Step 1: within-time estimation
Since E[εit ] = E[νit + uit ] = E[uit ] ̸= 0, transform the model:

lnCostit = α∗
t + TL(yit ,pit , zit ;β

∗) + ε∗it , (1)

where the parameter vector β∗ now excludes the original intercept β0; the new time-specific intercept is α∗
t = β0 + αt + E[uit ]; and

the transformed error term is ε∗it = νit + uit − E[uit ]. Therefore, by construction, E[ε∗it ] = 0, and the resulting model belongs to the
family of panel data models.

Let Q = (IN − (1/N)ιN ι
′
N). And denote a vector variable with a tilde as the result of pre-multiplying the vector by Q (e.g., z̃t is an

N × 1 vector, resulting from Qzt ). Thus, since the translog function TL(·) is linear in the parameters β∗, and the Q transformation is a
linear operator, the resulting model remains linear in β∗:

˜lnCostt =
∑

k

β∗
k X̃kt + ε̃∗t (2)

where X̃kt are the transformed versions (QXkt ) of each vector Xkt representing a term required by the translog specification. Since
E[ε∗t ] = 0, estimation of β∗ is conducted via OLS.

(Back)
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Appendix: Estimation Strategy (more info)
Step 2: GMM-SFA
Construct the pseudo-residuals, denoted by eit , using the first-step estimates β̂∗:

eit = lnCostit − TL(yit ,pit , zit ; β̂
∗) ⇒ eit ≈ β0 + αt + νit + uit

Since by construction E[ε∗it ] = 0, the time-specific mean component α∗
t = (β0 + αt + E[uit ]) is estimated by the cross-sectional

average of the pseudo-residuals for each period t . Thus, by computing ēit = eit − α̂∗
t we obtain the central equation for the second stage:

ēit = νit + uit − E[uit ] (which is a SF model) (3)

Since εt = νt + ut = (IN − ρWt )
−1(ν̇t + u̇t ) = S(ρ,Wt )(ν̇t + u̇t ), we use the second-order moments:

V(εt ) = V(S(ρ,Wt )(ν̇t + u̇t )) =

[
σ2
ν̇ +

(
1 −

2
π

)
σ2

u̇

]
S(ρ,Wt )(S(ρ,Wt ))

⊤ (4)

Specifically, the parameters are chosen to minimize the GMM objective function:

min
θ

Q(θ) = min
θ

T∑
t=1

∥∥∥V̂t − V(εt ;θ)
∥∥∥2

F
(5)

(Back)
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Appendix: Decomposition of Cost Inefficiency Estimates
The total estimated cost inefficiency can be decomposed to isolate the influence of network effects.

■ Since ut = ρWtut + u̇t , the total inefficiency (ut ) is a function of the underlying, network-independent
inefficiency (u̇t ) and the network multiplier, S:

ût = S(ρ̂,Wt)ˆ̇ut

where ˆ̇ut is a vector of bank-specific estimates recovered using the JLMS method (i.e., ˆ̇uit = E[u̇it |ˆ̇εit ]).

■ The network multiplier matrix, S, captures how an initial inefficiency shock at one bank propagates
through the network:

S(ρ̂,Wt) = (IN − ρ̂Wt)
−1

■ Expanding the first equation for a single bank i allows us to separate its total inefficiency into two
components:

Total Inefficiencyit = sii
ˆ̇uit︸︷︷︸

Direct Effect

+
∑
j ̸=i

sij
ˆ̇ujt︸ ︷︷ ︸

Indirect (Network) Effect

The Direct Effect reflects the bank’s own idiosyncratic inefficiency, while the Indirect Effect captures
the net influence of all peers. (Back)
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Appendix: Standard Errors via Wild Bootstrap
Given the multi-step GMM procedure, analytical standard errors are complex. We employ a wild bootstrap
approach.

1. Create bootstrapped structural residuals, ε̇(b)it , by multiplying the original estimates with random
multipliers, ξ(b)it , drawn from the Mammen (1993) two-point distribution.

ε̇
(b)
it = ˆ̇εit · ξ(b)it

2. Generate a bootstrapped log-cost variable, lnCost(b)it , using the original parameter estimates (ρ̂, β̂∗,
etc.) and the new residuals.

lnCost (b)t = ̂(β0 + αt)ιN + TL(. . . ; β̂∗) + (IN − ρ̂Wt)
−1 ˆ̇ε

(b)
t

3. Apply the two-step GMM estimation procedure to the new dataset using lnCost(b)it as the dependent
variable to obtain a new set of parameters (ρ̂(b), σ̂(b)

v̇ , σ̂(b)
u̇ ).

4. This process is repeated B times. The standard error for each parameter is the empirical standard
deviation of its B bootstrapped estimates.
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