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ABSTRACT 

This study empirically evaluates the performance of Large Language Models (LLMs) in predicting credit risk for 
retail banking in Chile, comparing their effectiveness to traditional machine learning models. A variety of LLM 
configurations were tested, including models with and without fine-tuning, different chunking sizes, and several 
prompt engineering strategies, such as credit analyst roleplay, chain-of-thought reasoning, emotional stimuli, 
take a breather, and example-based learning (one-shot and few-shot). The analysis compared open-source 
models like Llama 3 and commercial models like GPT-3.5 and GPT-4.0. Results indicate that fine-tuned LLMs 
can achieve predictive accuracy levels comparable to traditional models such as logistic regression and 
ensemble methods like LightGBM. The top-performing fine-tuned GPT-3.5, GPT-4.0 and Llama 3 configurations 
achieved AUROC values near 80%, closely matching the best-performing LightGBM benchmark. 

A stability test was conducted to assess the consistency of predictions, crucial for credit risk applications. LLMs 
with a temperature setting of zero demonstrated high stability, producing consistent results across repeated 
queries, while higher temperature settings introduced variability, especially in default predictions, underscoring 
the importance of controlling this parameter for reliable results. 

Additionally, the LLMs were evaluated for their ability to explain their predictions. Textual explanations 
provided by a best performing LLM model were blindly reviewed by a credit risk expert, who rated them with 
an average score of 5.5/7. This result shows promise for explainability but also revealing occasional 
inconsistencies. Some explanations omitted relevant variables or provided justifications that did not fully align 
with the underlying data. These findings suggest that, with fine-tuning and careful configuration, LLMs can 
complement traditional models by offering competitive predictive performance and enhanced transparency in 
financial applications, particularly in credit risk management. 

Keywords: Credit Risk Prediction, Large Language Models (LLMs), Fine-Tuning, Prompt Engineering, 
Explainability in AI, Consumer Loans, Retail Banking, Artificial Intelligence in Finance. 
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RESUMEN 

Este estudio evalúa empíricamente el rendimiento de los Modelos de Lenguaje Grande (LLMs) en la predicción 
del riesgo de crédito para la banca minorista en Chile, comparando su efectividad con modelos tradicionales 
de aprendizaje automático. Se probaron diversas configuraciones de LLM, incluyendo modelos con y sin ajuste 
fino, diferentes tamaños de chunks y varias estrategias de ingeniería de prompts, como la simulación de rol de 
analista de crédito, el razonamiento en cadena toma un respiro, estímulos emocionales y el aprendizaje basado 
en ejemplos (de un solo disparo y de pocos disparos). El análisis comparó modelos de código abierto como 
Llama 3 y modelos comerciales como GPT-3.5 y GPT-4.0. Los resultados indican que los LLM ajustados 
finamente pueden alcanzar niveles de precisión predictiva comparables a los modelos tradicionales como la 
regresión logística y métodos de conjunto como LightGBM. Las configuraciones de GPT-3.5, GPT-4.0 y Llama 3 
ajustadas finamente y de mejor desempeño lograron valores de AUROC cercanos al 80%, acercándose mucho 
al mejor punto de referencia de LightGBM. 

Se realizó una prueba de estabilidad para evaluar la consistencia de las predicciones, crucial para aplicaciones 
de riesgo de crédito. Los LLM con una configuración de temperatura de cero demostraron alta estabilidad, 
produciendo resultados consistentes en consultas repetidas, mientras que configuraciones de temperatura 
más alta introdujeron variabilidad, especialmente en las predicciones de incumplimiento, subrayando la 
importancia de controlar este parámetro para obtener resultados confiables. 

Además, se evaluó la capacidad de los LLM para explicar sus predicciones. Las explicaciones textuales 
proporcionadas por uno de los mejores modelos LLM fueron revisadas a ciegas por un experto en riesgo de 
crédito, quien las calificó con un puntaje promedio de 5.5/7. Este resultado muestra potencial para la 
explicabilidad, aunque también revela inconsistencias ocasionales. Algunas explicaciones omitieron variables 
relevantes o proporcionaron justificaciones que no se alineaban completamente con los datos subyacentes. 
Estos hallazgos sugieren que, con ajuste fino y una configuración cuidadosa, los LLM pueden complementar a 
los modelos tradicionales al ofrecer un rendimiento predictivo competitivo y una mayor transparencia en 
aplicaciones financieras, particularmente en la gestión del riesgo de crédito.  
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I. Introduction 

Large Language Models (LLMs) have rapidly emerged as a central focus of artificial intelligence (AI) 
research and application across numerous sectors of the economy. Their impressive performance in 
a wide range of tasks has garnered significant attention from both industry and academia. Today, a 
growing community is developing and exploring new applications for these models, such as instant 
translation, virtual assistants, personalized recommendations, sentiment analysis, code generation 
from general instructions, and creative content generation, among many others. 

In the financial sector, machine learning (ML) techniques have already shown substantial 
improvements in predictive modelling for risk management (Van Liebergen 2017; Aziz and Dowling 
2019; Leo et al. 2019; Mashrur et al. 2020). One of the most critical areas where these advancements 
are making an impact is credit risk management, which focuses on assessing the likelihood that a 
borrower will default on their financial obligations. Credit risk modelling, particularly the estimation 
of the Probability of Default (PD), is crucial for financial institutions, as it helps determine capital 
requirements and informs loan pricing and portfolio management decisions. 

LLMs represent a promising frontier in this regard, as they are designed to process both structured 
and unstructured data, such as customer information and financial documents. Despite this potential, 
the use of LLMs in credit risk prediction has been limited. Recent studies have begun exploring the 
applicability of LLMs in related domains. For example, Wu et al. (2021) demonstrated that LLMs could 
improve sentiment analysis for financial texts, helping predict stock market movements. Similarly, 
Bakumenko et al. (2024) showed that LLMs can enhance the performance of fraud anomaly detection 
from financial transactions. 

When it comes to applying LLMs directly to PD prediction, the most notable work so far is by Babei 
and Giudici (2024). They explored the potential of LLMs for credit scoring and found that these 
models could perform similarly to classical techniques such as logistic regression, particularly in cases 
where text data and other unstructured inputs were critical. Their study, however, was limited in 
scope, relying on a small dataset and a single benchmark model for comparison. This paper builds on 
that foundation by expanding the analysis to a larger dataset, a more diverse set of models, and a 
comprehensive evaluation of LLM configurations, including fine-tuning and prompt engineering 
techniques.  

In the broader context of risk management, there is a growing body of work focusing on the 
explainability of complex models. Techniques such as SHAP values (Lundberg and Lee 2017) have 
been developed to explain the predictions of black-box models like deep neural networks and 
ensemble methods. However, few studies have explored whether LLMs can not only predict credit 
risk but also provide coherent and actionable explanations for their predictions. Our study is one of 
the first to systematically evaluate the quality of LLM-generated explanations in the context of credit 
risk.  

Another challenge in applying LLMs to financial risk management is the stability of predictions. LLMs 
can produce varying outputs depending on internal parameters such as the model’s temperature 
setting, which controls the degree of randomness in the generated predictions. In fields like credit 
risk, where consistency and reliability are paramount, this variability is problematic. Existing literature 
on AI model stability in finance, such as Vela et al. (2023), has primarily focused on traditional models, 
leaving a gap in understanding how to manage variability in LLM predictions effectively. 
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We address the gap in the literature regarding LLM explainability and stability, two factors crucial for 
their deployment in high-stakes decision-making environments like credit risk management. The key 
contributions of this paper are threefold: a) We compare the performance of LLMs, including GPT-
3.5, GPT-4.0, and Llama 3, against traditional ML models such as logistic regression and LightGBM. 
The results show that fine-tuned LLMs can achieve predictive accuracy comparable to traditional 
models, with AUROC values approaching 80%; b) beyond accuracy, LLMs offer a unique advantage by 
generating textual explanations for their predictions. We assess the quality of these explanations by 
having a credit risk expert evaluate a sample of model outputs. The expert found the explanations 
generally useful, assigning them an average score of 5.5/7, though occasional inconsistencies were 
noted, c) a critical requirement for deploying AI in credit risk management is the stability of 
predictions. We conduct a stability test by repeatedly querying the same LLMs with identical inputs. 
Our findings show that LLMs can produce consistent predictions when the model temperature is set 
to zero, minimizing random variations, a necessary condition for reliable credit risk evaluation. 

This study is among the first to apply LLMs to credit risk prediction at scale, offering valuable insights 
into both the predictive power and practical limitations of these models in financial applications. In 
addition to showing that LLMs can compete with traditional ML techniques in terms of accuracy, our 
results highlight their potential to improve the explainability of credit risk models, a key concern for 
regulatory compliance and transparency in financial decision-making. Moreover, this study is one of 
the first to systematically evaluate the quality of LLM-generated explanations, a key requirement for 
their use in regulated financial environments. 

In the following sections, we first provide a conceptual overview of credit risk modelling and LLMs. 
We then outline the experimental design and dataset used for this study, followed by a presentation 
of our results and a detailed discussion on the challenges and opportunities of incorporating LLMs 
into credit risk management. Finally, we conclude with suggestions for future research and 
implications for practitioners. 

II. Literature Review 

Accurate assessment of credit risk is critical for financial institutions, influencing decisions related to 
loan approvals, capital allocation and risk management. Credit risk refers to the possibility that a 
borrower will default on financial obligations, resulting in losses for the lender. To quantify this risk, 
two key metrics are commonly used: Probability of Default (PD) and Loss Given Default (LGD). PD 
estimates the likelihood that a borrower will default within a specific time frame, typically 12 months, 
while LGD represents the percentage of economic loss incurred once default occurs. These two 
parameters form the foundation of credit risk modelling in the financial sector. 

Historically, PD has been modelled using statistical approaches such as logistic regression, which 
provides interpretable results and allows institutions to incorporate structured financial data into 
their models, such as borrower characteristics and macroeconomic indicators (Kruppa et al., 2013; 
Addo et al., 2018). While logistic regression has been a standard approach, it has limitations when 
dealing with the complex and often non-linear relationships inherent in financial data. To address 
these limitations, machine learning (ML) techniques have emerged as more sophisticated 
alternatives. Advanced ML techniques such as support vector machines (SVMs), random forests, and 
gradient boosting machines (e.g., LightGBM) have demonstrated significant improvements in 
predictive accuracy over traditional models (Mhlanga, 2021; Breeden, 2021). These models excel at 
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identifying patterns in large datasets and can process multiple variables simultaneously to predict 
credit risk more accurately. However, they predominantly rely on structured data often struggle to 
incorporate unstructured information, such as text data from loan applications or financial reports, 
which could provide additional insights into borrower behaviour (Aziz and Dowling, 2019). 

Neural networks, a subset of machine learning, have emerged as powerful tools for predictive 
modelling that can also be adopted to process both structured and unstructured data. Although the 
theory of neural networks was developed decades ago, their practical application in finance only 
became feasible with advancements in computational power (Macukow, 2016). The core structure 
of a neural network consists of layers of neurons (equations), each applying a weighted sum of inputs 
and passing the result through an activation function to generate an output (Goodfellow et al., 2016). 
These networks are capable of modelling highly non-linear relationships, making them suitable for 
complex financial tasks. Deep learning, a form of neural network architecture with multiple layers (or 
"depth"), has enabled the processing of vast datasets with complex structures, such as images, time 
series, and text (Chollet, 2018). Specialized deep neural networks architectures have emerged for 
specific data types. For example, convolutional neural networks (CNNs) were originally designed for 
image data, while Long Short-Term Memory (LSTM) networks are tailored for sequential data, such 
as time series. However, natural language processing (NLP), which deals with text data, presents 
unique challenges due to the varying relationships between words in a sentence. 

Traditional neural network architectures struggled with this complexity until the introduction of the 
transformer architecture, which incorporates an attention mechanism (Vaswani et al., 2017). This 
development revolutionized NLP by enabling models to capture long-range dependencies in text 
data. The attention mechanism allows transformers to weigh the importance of different words 
relative to one another, making them particularly adept at handling tasks where context plays a 
crucial role (Vaswani et al., 2017). This breakthrough paved the way for Large Language Models 
(LLMs), such as GPT-3 (Brown et al., 2020), BERT (Devlin et al., 2019) and LlaMA (Touvron et al., 2023), 
which are trained on massive datasets and contain billions of parameters. LLMs excel in generating 
human-like text, answering questions, translating languages, analysing text in search for specific 
topics or sentiments and even summarizing complex documents. Thus, their potential ability to 
process both structured and unstructured data, including financial documents and borrower 
communications, makes them highly relevant for credit risk modelling. 

While LLMs have proven effective in numerous fields, their application in credit risk prediction is still 
emerging. Recent studies, such as Babei and Giudici (2024), have demonstrated that LLMs can 
achieve comparable performance to traditional models like logistic regression when predicting PD. 
Their research highlights the potential of LLMs to incorporate unstructured data—an area where 
traditional models struggle—into risk assessments. However, deploying LLMs in financial applications 
like credit risk modelling presents several challenges, particularly around performance, stability, and 
explainability.  

LLMs can produce varying outputs given the same input depending on factors such as the 
temperature parameter, which introduces randomness into the text generation process. This 
variability is problematic in high-stakes settings where consistency and reliability are crucial, such as 
credit risk assessment. Additionally, neural networks in general and LLMs in particular, are often 
regarded as "black-box" models, with opaque decision-making processes that complicate regulatory 
compliance and stakeholder trust. Addressing these challenges requires careful consideration of 
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several research design decisions, which can be broadly categorized into three areas: model 
characteristics, interaction strategies, and external enhancements.  

Model characteristics refer to the internal structure of LLMs, including factors like model size, the 
number of internal layers, and hyperparameter configurations. Larger models with more layers and 
weights can capture intricate patterns in data, but they also require more computational resources 
and can lead to risks such as overfitting or instability in predictions. Researchers frequently use pre-
existing models like GPT, BERT, or Llama, which come with established architectures and pre-trained 
weights. By leveraging the knowledge these models acquire from large, general-purpose datasets, 
researchers can apply them "as is" to domain-specific tasks such as credit risk prediction or financial 
sentiment analysis (Pan and Yang, 2010; Wu et al., 2021). This method, known as transfer learning, 
allows models to utilize their prior learning without the need for additional training. A more 
specialized approach, fine-tuning, involves retraining a pre-trained LLM on domain-specific data to 
enhance its performance for specific tasks, like predicting credit defaults. Studies have demonstrated 
that fine-tuning improves model accuracy in financial tasks by capturing subtle patterns in borrower 
behaviour (Howard and Ruder, 2018; Babei and Giudici, 2024). 

Interaction strategies, in conjunction with transfer learning, focus on how users can guide LLM 
outputs by providing specific instructions to the model through prompt engineering. This method has 
been shown to significantly improve model performance without the need to modify internal 
parameters. One effective strategy from the literature is requesting the model to plan how to solve 
a task, before executing it, i.e. asking the model to “think step by step" through its response, following 
the “chain-of-thought” reasoning technique, as demonstrated by Wei et al. (2022). This approach 
enables the model to break down complex tasks and generate more coherent and accurate 
predictions. Another method highlighted in recent research involves instructing the model to "take a 
breather" or "be patient" before generating a response. Lou et al. (2024) suggest that this strategy 
helps the model produce more thoughtful and deliberate answers, enhancing its decision-making 
process. Additionally, “emotional” prompts have been shown to improve LLM performance by 
integrating emotive cues into the instructions. Li et al. (2023) explored this idea, coining the term 
"Emotion Prompt" to describe prompts that combine the original task with emotional stimuli. For 
example, telling the model that "this analysis is very important for my career" can lead to more 
carefully considered responses. Their research demonstrated that adding emotional stimuli to 
prompts led to significant improvements across various tasks, including instruction induction and 
generative tasks, highlighting the potential of emotional intelligence in enhancing LLM output. Finally, 
a common strategy in prompt engineering involves assigning the model a specific role, such as 
instructing it to "act as an expert credit risk analyst." This role-based prompting guides the model’s 
behaviour and enables it to simulate professional decision-making processes, improving the 
relevance and accuracy of predictions in tasks like credit risk assessment (Wang et al., 2023).  

Another key interaction strategy is example-based learning, where the model learns from examples 
provided during inference. In zero-shot learning, the model performs a task without any examples, 
relying solely on the prompt to understand and execute the task. Conversely, in one-shot or few-shot 
learning, the model is guided by a small set of examples embedded in the prompt, helping it grasp 
the task more effectively. This approach is particularly valuable when domain-specific data is scarce, 
allowing the model to learn patterns from just a handful of examples (Brown et al., 2020).  

What makes these strategies powerful is their modularity. Researchers can combine multiple 
techniques within the same prompt to tailor the model's behaviour for specific tasks. For instance, a 
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researcher might ask the model to "think step by step" using the chain of thought strategy, request 
it to "be patient" and take a moment before responding, assign it a specific role, such as "acting as 
an expert credit risk analyst," and emphasize the importance of the task with emotional cues like "this 
analysis is crucial for my career." Additionally, the researcher can choose to provide zero or few 
examples in the prompt, depending on the complexity of the task or the availability of training data. 
This flexibility allows for a highly customizable interaction with the LLM, enhancing its ability to 
perform domain-specific tasks with greater accuracy and relevance. 

In addition to interaction strategies, the performance of LLMs can be further enhanced by providing 
them with access to external information or by enabling collaboration with other models or systems. 
These external enhancements expand the model's ability to incorporate real-world data and improve 
the accuracy of its predictions. One prominent method is Retrieval-Augmented Generation (RAG), 
which allows the LLM to retrieve relevant documents, such as financial reports or market data, during 
inference. This integration of external information adds valuable context, enabling the model to 
produce more accurate and informed predictions (Lewis et al., 2020; Wu et al., 2022). Moreover, 
these strategies can be combined in adaptive systems, where multiple specialized agents—whether 
LLMs or other models—work together to solve complex tasks. For example, in credit risk assessment, 
one agent might be tasked with gathering borrower data, another could focus on predicting default 
risk, and yet another might be responsible for generating explanations. These agents can access 
external services through Application Programming Interfaces (APIs) or utilize different LLM 
configurations to handle distinct tasks. Such systems create a dynamic and flexible framework for 
decision-making, where each agent performs a specific role, contributing to a more efficient and 
accurate solution. The combination of internal strategies—such as chain of thought, role assignment, 
and example-based learning—along with external enhancements like RAG and collaborative agent-
based systems, could enable LLMs to address domain-specific challenges with greater precision and 
flexibility. 

Considering the current state of the literature, and despite the progress in applying machine learning 
(ML) and LLMs to credit risk modelling, several research gaps arise. Comprehensive comparisons 
between LLMs and traditional ML models are limited, especially when considering the integration of 
both structured and unstructured data (Babei and Giudici, 2024). Additionally, the role of 
unstructured data, such as financial reports and customer communications, remains underexplored, 
despite LLMs being well-suited for processing such inputs (Wu et al., 2022). Furthermore, issues of 
explainability and stability, particularly the variability of predictions due to parameters like 
temperature, also present significant barriers to the adoption of LLMs in high-stakes financial 
applications. 

To address part of these gaps, we experiment with a subset of strategies— including transfer learning, 
fine-tuning, prompt engineering, example-based learning, and RAG—assessing their impact on LLM 
performance. A limitation of this study, however, is that we do not explore agent-based systems, 
which could provide additional flexibility by distributing tasks across multiple specialized agents. We 
also contribute by empirically comparing multiple LLMs—GPT-3.5, GPT-4.0, and Llama 3—against 
traditional models like logistic regression and LightGBM in the context of credit risk prediction. 
Additionally, we explore the integration of structured and unstructured data to enhance risk 
prediction and evaluate the quality of LLM-generated explanations by comparing them with expert 
opinions. Furthermore, we analyse the stability of LLM predictions and provide insights on improving 
consistency for high-stakes applications. 



 

10 
 

III. Methodology 

This section outlines the steps taken to evaluate the effectiveness of Large Language Models (LLMs) 
for credit risk prediction. The methodology is divided into three key components: (1) predictive 
modelling comparison between LLMs and traditional machine learning models; (2) stability testing to 
assess the consistency of LLM predictions; and (3) explainability analysis to evaluate the quality of the 
LLM-generated explanations. 

3.1 Predictive Modelling Comparison 

3.1.1 Data and Variables 

We employed a dataset provided by the chilean financial regulator, Comisión para el Mercado 
Financiero (CMF), under the CMF’s framework of calls for joint research projects. We utilized files 
submitted by the banks to CMF, following the regulatory guidelines outlined in the “Manual de 
Sistemas de Información” (Information Systems’ Manual). Banks report monthly detailed information 
about consumer loans, including details of the credit operation at the time of issuance (such as loan 
amounts and terms) as well as the current status of the loan. This includes whether the loan is 
classified as normal or in default, which allows us to construct the predictors and target variable for 
our study. The research focuses on consumer credit operations granted by banks in Chile between 
2010 and 2020. 

This dataset is unique because it contains information on all consumer credit operations within the 
Chilean banking system, with data validated by the regulator. As such, it provides comprehensive 
coverage of the consumer credit market with high-quality data. For instance, as of December 2020, 
the dataset covers 16.8 million credit operations, corresponding to 5.9 million individuals and 21 
different institutions, including banks and their subsidiaries. Importantly, this dataset is not publicly 
available; researchers accessed it under strict technical and legal conditions, with all information fully 
anonymized to ensure the exclusion of lender identification and borrowers’ personal data. Access 
was limited to predictor variables and the target label, where predictor variables (V1 to V10) 
represent widely recognized indicators in credit risk models, focusing on aspects like payment 
behaviour and debt ratios. 

The target variable for this study is Probability of Default (PD), a binary variable indicating whether a 
borrower will default within the following 12 months. According to the Chilean banking regulatory 
framework, a borrower is considered in default if any of the following occurs: i) a delay of 90 days or 
more in the payment of interest or capital; ii) the issuance of a new loan to cover a loan overdue by 
more than 60 days; or iii) forced restructuring or partial debt forgiveness. 

The process of predictor variables (V1 to V10) construction and selection is carried out following the 
development found in Beas et. al. (2024). Specifically, a set of 50 variables is created, from which the 
10 best are then selected based on a random recursive selection algorithm. Table 1 shows a detailed 
definition of all predictor variables in the study: 
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Table 1: Predictor Variables 

Name Definition 

V1 
Corresponds to a binary variable that takes a value of 1 when the client has a delinquency 
of more than 30 days in the financial system and the month prior to the observation. 

V2 
Corresponds to a binary variable that takes a value of 1 when the client has a mortgage 
guarantee and 0 otherwise. 

V3 
Debt to income ratio for the month, without considering off balance sheet exposures and 
commercial debt. This definition is currently used in the Chilean framework for the 
determination of risk weighted asset for credit risk. 

V4 
Delinquency in days in the bank in the last 12 months according to the following coding: 0 
equal to 0 days, 1 equal to between 1 to 30 days, 2 equal to between 31 to 60 days, 3 
equal to between 61 to 89 days, and 4 or more is a delay greater than 90 days. 

V5 
Financial burden in the month, considering off balance sheet exposures but not 
commercial debt. 

V6 
Financial burden in the month, considering off balance sheet exposures and commercial 
debt. 

V7 
Corresponds to the ratio between the debt of the month of observation compared to the 
average of the last 12 months. It considers all the debt in the system. 

V8 
Delinquency in days in the bank in the last 6 months according to the following coding: 0 
equal to 0 days, 1 equal to between 1 to 30 days, 2 equal to between 31 to 60 days, 3 
equal to between 61 to 89 days, and 4 or more is a delay greater than 90 days. 

V9 

Average delinquency in days in the bank in the last 3 months according to the following 
coding: 0 equal to 0 days, less than or equal to 1 is between 1 to 30 days, less than or 
equal to 2 and greater than 1 is equal to between 31 to 60 days, less than or equal to 3 
and greater than 2 is equal to between 61 to 89 days, and 3 or more is arrears greater 
than 90 days. 

V10 
Corresponds to a binary variable that takes a value of 1 when the client has a delinquency 
of more than 90 days in the system and between 3 to 1 month before the observation. 

3.1.2 Model Adaptation for LLMs 

Since LLMs are designed to handle unstructured text rather than structured data, we needed to 
transform the original structured dataset to fit the LLM input format requirements. For this, the 
predictor variables values for each borrower were converted into descriptive sentences in natural 
language, effectively creating a “credit report card” for each borrower. For example, a data point like 
V1 = 0.0 would be translated to: "The client has no delinquency in the last 30 days". These descriptions 
were then fed into the LLM as part of the input prompt. 

3.1.3 LLM Models, Benchmarking Models and Configurations 

We used several LLMs, including GPT-3.5, GPT-4.0o, GPT-4.0o mini, and Llama 3 8B (Radford et al., 
2018; Radford et al., 2019; Brown et al., 2020; OpenAI, 2022; OpenAI, 2023; Touvron et al., 2023). 
These models were chosen based on their strong performance in natural language tasks and their 
ability to process unstructured data. The GPT models were accessed through the OpenAI API, 
integrated with Python for easy querying and training, while Llama 3 was accessed via the Hugging 
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Face platform. In total, we conducted 34 experiments across various configurations, evaluating both 
logistic regression (RL) and LightGBM as traditional machine learning benchmarks. For LightGBM, we 
optimized hyperparameters through grid search with cross-validation. 

3.1.4 Sampling and Cross-Validation 

We used a sample of 10,000 anonymized borrower observations. In the first place, to comply with 
Chilean data protection regulations (anonymization) and in second place, primarily due to the direct 
costs associated with inference and training using proprietary models like ChatGPT 3.5 and ChatGPT 
4.0, as the researchers had a limited budget for experimentation. 

The dataset was divided into 10 stratified, randomly allocated subsets, each maintaining the 
consistent proportion of defaulted borrowers (10%). To ensure robustness, we employed 10-fold 
cross-validation, implemented as follows: in each iteration, we had access to 9,000 samples in the 
training set and 1,000 samples in the testing set. From the 9,000 observations available in the training 
set we took a sub-sample of equal number of defaulted and non-defaulted borrowers (500 of each 
class), following common practice in the machine learning literature where balancing and sub-
sampling are standard techniques to improve model performance with imbalanced datasets (see, for 
example, Haixiang et al., 2017). This approach mitigated the bias that might arise from the original 
distribution, where default cases were less prevalent. For models that did not require training (such 
as LLMs without fine-tuning), we evaluated them directly on the 10 testing sets across the 10 folds, 
applying the model 10 times to the 1,000 testing samples from each subset. 

Formally, the procedure can be expressed as in algorithm 1. 

Algorithm 1: Sampling and Cross-Validation Process 
Input: 

• D: Full dataset of 10,000 borrower observations. 

• k=10: Number of folds for cross-validation. 

• m=1,000: Size of each balanced training sample. 

• T=10: Number of iterations. 
Output: 

• Performance metrics with confidence intervals. 
Procedure: 

1. Split dataset D into k stratified subsets, maintaining the original proportion of 10% defaulted 
borrowers in each subset Si , where i=1…k, with ∣ Si ∣=1,000|. 

2. For each iteration t in {1, …, T}: 
1. Select k−1 subsets {S1, S2, …, Sk−1} for training, reserving the remaining subset Sk for testing. 
2. Sub-sample m=1,000 training samples from the k−1 subsets, ensuring a balanced distribution 

with 500 defaulted and 500 non-defaulted borrowers. 
3. Train the model on the balanced training set {S1, S2, …, Sk−1} 
4. Evaluate the model on the reserved testing subset Sk 
5. Store the performance metrics Mt from the evaluation. 

3. Repeat steps 2-4 for each fold until all subsets S1, S2, …, Sk have been used for testing. 
4. Compute confidence intervals for the performance metrics using the results from all folds M1, M2, …, 

MT. 

3.1.5 Evaluation Metrics 

The performance of both LLMs and traditional machine learning models was evaluated using two key 
metrics: Area Under the ROC Curve (AUROC) and Average Precision (AVGPREC). AUROC measures 
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the model's ability to distinguish between defaulted and non-defaulted borrowers. AVGPREC 
represents the area under the precision-recall curve and balances precision with recall, making it 
particularly useful for imbalanced datasets, such as the one used in this study, where defaulted 
borrowers constitute a minority class. One important issue relates to the fact that LLMs typically 
generate text-based predictions rather than raw probability scores, which are needed for the 
calculation of both AUROC and AVGPREC metrics. Thus, we approximated the probability score s(x) 
for each borrower using the transition probability 𝑙(𝑙𝑎𝑏𝑒𝑙), where 𝑙𝑎𝑏𝑒𝑙 refers to the predicted status, 
and 𝑙(𝑙𝑎𝑏𝑒𝑙) represents the probability of transitioning to that label. For LLMs, the calculation of 𝑠(𝑥) 
is as follows: 

𝑠(𝑥) = {

𝑙(𝑙𝑎𝑏𝑒𝑙)                   𝑖𝑓 𝑙𝑎𝑏𝑒𝑙 = default 𝑎𝑛𝑑 𝑙(𝑙𝑎𝑏𝑒𝑙) > 0.5

1 − 𝑙(𝑙𝑎𝑏𝑒𝑙)           𝑖𝑓 𝑙𝑎𝑏𝑒𝑙 = normal 𝑎𝑛𝑑 𝑙(𝑙𝑎𝑏𝑒𝑙) > 0.5

     0.5                                                               𝑖𝑓  𝑙(𝑙𝑎𝑏𝑒𝑙) ≤ 0.5

 

Here, 𝑙𝑎𝑏𝑒𝑙 is the predicted status by the LLM, while 𝑙(𝑙𝑎𝑏𝑒𝑙) is the associated transition probability, 
retrieved from “output_scores” or the "logprobs" provided by the models at inference. 

This innovative formulation allows us to align LLM-generated outputs with traditional metrics used in 
binary classification tasks, like AUROC and AVGPREC. Additionally, this approach provides a 
complementary measure of the confidence with which the LLM makes its predictions. By using these 
confidence scores, we can generate a decision threshold tailored to the risk appetite of the financial 
institution, offering a practical tool for decision-making in credit risk evaluation. 

3.1.6 Modelling Strategies for Credit Risk Prediction 

We employed a variety of modelling strategies to evaluate the performance of both traditional 
machine learning models and large language models (LLMs) for credit risk prediction. These strategies 
involved benchmark models, transfer learning, fine-tuning, prompt engineering, example-based 
learning, chunking, and external enhancements such as Retrieval-Augmented Generation (RAG) via 
“Dynamic Shoting,” an adaptive approach that selects examples based on the query context, 
optimizing model responses (Sun et al., 2022). 

• Benchmark Models: As a baseline, we trained and evaluated two traditional machine learning 
models—logistic regression (RL) and LightGBM. For LightGBM, we optimized 
hyperparameters using grid search combined with cross-validation, allowing us to 
benchmark the performance of LLMs against traditional models optimized under ideal 
conditions. 

• LLMs with Fine-Tuning: For a subset of models, such as GPT-3.5, GPT-4.0o, GPT-4.0 mini, and 
Llama 3 (8B), we conducted fine-tuning, where we retrained the LLMs on a domain-specific 
dataset. Fine-tuning was used to adjust the internal weights of the models, improving their 
performance on the specialized task of predicting credit default risk. As explained later, the 
fine-tuning process showed notable improvements in prediction accuracy in some cases, 
especially in scenarios with a balanced set of defaulted and non-defaulted borrowers. 

• LLMs Without Fine-Tuning (Transfer Learning): For the LLMs, we evaluated their 
performance without fine-tuning (transfer learning) to test how well the pre-trained models 
could generalize to the credit risk prediction task. The models used were GPT-3.5, GPT-4.0o, 
GPT-4.0 mini, and Llama 3 (8B). This phase allowed us to compare their out-of-the-box 
performance with the benchmark models. 
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• LLMs Without Fine-Tuning (Transfer Learning) + Prompt Engineering: We employed several 
prompt engineering techniques to guide the LLMs’ outputs and enhance their predictive 
ability. First, we used the take a role approach: we instructed the model to assume the role 
of a credit risk analyst with prompts such as "You are an expert credit risk analyst tasked with 
evaluating credit risk”. Second, the think step by step approach: we employed the chain-of-
thought reasoning technique by asking the model to break down its decision-making process 
step by step, enhancing its logical reasoning capabilities (Wei et al., 2022). Third, the take a 
breather approach: this technique asked the model to "be patient" and take time before 
generating the response, which helps produce more thoughtful answers (Lou et al., 2024). 
And forth, the emotional stimuli approach: we included emotional cues like "this analysis is 
very important for my career" to test if this would improve the model's performance, 
following the findings of Li et al. (2023). 

• LLMs Without Fine-Tuning (Transfer Learning) + Example-Based Learning (Zero-Shot to Few-
Shot): To further enhance performance, we used example-based reasoning. We tested two 
approaches. First, the zero-shot Learning: in this approach, the model was asked to predict 
the credit risk without any prior examples, relying only on the task description. And second, 
the few-shot learning: We provided the model with a small set of examples to guide its 
understanding of the task. We tested different numbers of shots (5, 10, and 20), where the 
examples were balanced between defaulted and non-defaulted borrowers. The few-shot 
examples were consistent across all configurations. 

• Chunks: Another experimental parameter we tested was the concept of "chunks"—the 
number of borrowers the model is asked to predict at once. We tested three chunk sizes: 1 
(one borrower at a time), 20 (20 borrowers in one prediction request), and 100 (100 
borrowers at once). There are three main reasons for testing with chunks: i) Cost Efficiency: 
Making one API call to predict multiple borrowers at once can be more cost-effective than 
predicting each borrower individually; ii) Time Efficiency: Predicting several borrowers 
simultaneously can also reduce time, as it avoids the overhead of repeatedly loading the 
model, sending data, and receiving responses; and  iii) Contextual Performance: The 
additional context provided by having more examples within the prompt may lead to 
improved model performance, as the model can potentially benefit from the richer input, 
even without being explicitly given the correct labels (similar to few-shot learning). Table 2 
shows how chunk size impacts performance across various experiments. 

• External Enhancements Using Retrieval-Augmented Generation (RAG via Dynamic Shoting): 
In addition to interaction strategies, we incorporated RAG via Dynamic Shoting as an external 
enhancement. Instead of providing random examples in the few-shot setting, we used 
Dynamic Shoting to retrieve the most contextually relevant examples for each borrower. This 
was done by vectorizing the dataset and using a cosine similarity metric to retrieve the closest 
matches, similar to a k-nearest neighbors (k-NN) approach. This helped improve prediction 
accuracy by selecting the most appropriate examples in each prediction. 

• Modular and Combinatorial Nature of Strategies: It is important to note that the various 
strategies tested—such as fine-tuning, prompt engineering techniques (step-by-step 
reasoning, take a breather), and example-based learning (zero-shot and few-shot learning)—
are modular. In our experimental design, we created multiple configurations by "turning on" 
or "turning off" these strategies. For instance, we tested the LLMs in scenarios where fine-
tuning was applied in combination with prompt engineering or where external 
enhancements such as RAG were utilized alongside few-shot learning. As demonstrated in 
Table 2, this modular approach resulted in a total of 32 distinct experiments, allowing us to 
assess the impact of each strategy and their combinations on model performance across 
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various settings. Figure 1 shows an example prompt and its modular components. As 
mentioned, ID was an anonymized code that allow us to track the same customer but without 
access to any of its personal information. 

3.1.7 Resource Constraints and Model Selection 

Given the costs associated with proprietary models like GPT-4.0o and GPT-4.0 mini, we adopted a 
two-phase approach to optimize resource allocation. In the first phase, we tested a broader set of 
configurations using the open-source LlaMA 3 8B model and the more affordable GPT-3.5 model. This 
allowed us to explore a wide range of strategies, including prompt engineering, example-based 
learning, chunk sizes, and Retrieval-Augmented Generation (RAG) via Dynamic Shoting, to identify 
the most effective combinations. Once we identified the top-performing strategies, we proceeded to 
the second phase, where we applied only the best-performing configurations to GPT-4.0o and GPT-
4.0 mini models. This selective approach helped balance the need for comprehensive testing with the 
financial limitations of running multiple experiments on expensive models. Consequently, only a 
subset of configurations was tested on these models, as seen in Table 2. 

Figure 1: Modular components of prompt 

 

3.2 Stability Testing 

In high-stakes financial environments, consistency is essential. To evaluate the stability of the LLM 
models, we examined how their predictions varied, particularly focusing on the temperature 
parameter, which controls randomness in the generated text. Thus, we conducted stability tests by 
running 100 predictions for each borrower in a sub-sample of randomly selected 100 debtors. 
Predictions were made using two temperature settings: 0.5, allowing some randomness in output 
generation; and 0.0, eliminating randomness to ensure maximum consistency. Both GPT-3.5 and 
Llama 3 (8B), with and without fine-tuning, were subjected to these tests. The key outcome was the 
score s(x) assigned to each borrower, which ideally should remain stable across predictions. High 
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variability in scores—especially for defaulted borrowers—would signal inconsistencies in the model’s 
decision-making process, which could lead to risk management issues. 

3.3 Explainability Analysis 

LLMs are often considered "black-box" models, which poses challenges for their adoption in 
regulated financial environments where transparency is required. To address this, we conducted an 
explainability analysis, focusing on how well LLMs could justify their predictions. Thus, we asked the 
best-performing LLM model to provide explanations for its credit risk predictions on a sub-sample of 
100 randomly selected borrowers. The model was prompted to generate both a default prediction 
and a corresponding explanation, justifying the decision based on the borrower’s financial 
characteristics. For example, a typical explanation might state: “The debtor has a high delinquency in 
the last 90 days and no mortgage guarantee, indicating a high risk of default.” 

These explanations were blindly reviewed by a highly experienced credit risk expert with over 25 
years in the field, who rated their quality and accuracy on a scale from 1 to 7. A former credit risk 
manager at Chile's largest international bank, he was provided with anonymized input data, the LLM-
generated prediction, the associated probability score, and the model’s explanation for each 
borrower (more details in Appendix 1). To ensure objective evaluation, he was not informed that an 
LLM generated these predictions and explanations; instead, he believed they came from a junior 
analyst. This "blind" setup aimed to eliminate bias, focusing his assessment solely on the quality of 
the explanations.  

Following the well-established "4 Cs of Credit" framework—Capacity, Character, Collateral, and 
Capital (Fraser et al., 2001)—he evaluated each borrower’s financial characteristics, a method 
commonly used to determine creditworthiness. Importantly, he volunteered his expertise without 
compensation, and his access was strictly limited to anonymized predictor variables and model 
explanations, ensuring full data privacy. Figure 2 displays the modified prompt asking the model to 
provide explanations for its predictions. 

Figure 2: Prompt that asks explanations from the LLM model. 
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IV. Results and Analysis 

This section presents results in table 2 and findings from the experiments described in the 
Methodology. Results are structured in alignment with the three core methodological components: 
(1) Predictive Modelling Comparison, (2) Stability Testing, and (3) Explainability Analysis.  

Additionally, Appendix 2 shows the results of the hypothesis test for the mean, where the null 
hypothesis is that the average AUROC is the same for two given experiments. In this appendix, bold 
and asterisks highlight when the null hypothesis can be rejected, and therefore the difference in 
means is significantly different. An element (i,j) in the table represents the average difference 
between experiment (i) minus experiment (j). Appendix 3 contains the same information, except in 
this case, the average difference in the AVGPREC measure is tested. In both appendices, the results 
for each model are presented according to the numbering given in table 2. 

4.1 Predictive Modelling Comparison 

4.1.1 Role of Chunk Sizes 

An unexpected finding from the experiments is the role of chunk size. As shown in the table 2, chunk 
size impacts both cost and performance. Testing with larger chunks (e.g., 20 or 100 borrowers at a 
time) proved to be significantly more cost-effective and time-efficient. By running predictions on 
multiple borrowers in a single API call, we minimized the overhead associated with model loading 
and API response times. This strategy also has the potential to improve model performance, as 
providing more borrowers in a single request offers additional context to the LLM, similar to few-shot 
learning but without the explicit labelling. For example, in GPT-3.5, chunk sizes of 20 generally yielded 
better results in terms of AUROC and AVGPREC compared to single-borrower predictions. This is a 
significant finding for the application of LLMs in large-scale credit risk modelling, where efficiency in 
cost and time is crucial. Specifically, GPT-3.5 with chunk size 20 achieved 73.4% AUROC and 24.8% 
AVGPREC, whereas the model with chunk size 1 achieved 72.6% AUROC and 26.4% AVGPREC. The 
trade-off in precision was minimal, but the efficiency gains in both time and cost make larger chunk 
sizes an attractive option. With chunk size 100, performance remained similar with 71.2% AUROC 
and 22.9% AVGPREC, indicating that while larger chunk sizes provide cost efficiency, chunk sizes 
beyond 20 do not substantially improve performance. This is a significant finding for the application 
of LLMs in large-scale credit risk modelling, where efficiency in cost and time is crucial. 

4.1.2 Performance Comparison 

In terms of performance, traditional models like Logistic Regression (RL) and LightGBM (L-GBM) 
showed strong baseline results, with LightGBM outperforming RL in both AUROC and AVGPREC. 
Specifically, LightGBM achieved 81.7% AUROC and 45.2% AVGPREC, compared to Logistic 
Regression's 79.1% AUROC and 39.3% AVGPREC. LLMs without fine-tuning generally underperformed 
compared to traditional models. For example, GPT-3.5 achieved 69.3% AUROC and 23.3% AVGPREC 
when tested without fine-tuning in a zero-shot learning no interaction strategies configuration. 
However, after tuning various prompt engineering strategies and experimenting with different chunk 
sizes, performance improved, with GPT-3.5 reaching 73.4% AUROC and 24.8% AVGPREC when using 
chunk size 20 and few-shot learning with five examples. 
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Fine-tuned LLMs demonstrated significant improvement. For instance, GPT-3.5 with fine-tuning 
achieved 80.2% AUROC and 40.7% AVGPREC, nearing the performance of LightGBM. GPT-4.0o mini 
also showed considerable improvement after fine-tuning, with 80.1% AUROC and 40.8% AVGPREC. 
Fine-tuning proved to be particularly effective in enhancing LLM performance, allowing models to 
better adjust to the specific task of credit risk prediction. The fact that GPT-3.5 and Llama 3 achieved 
similar results to GPT-4.0 after fine-tuning highlights a critical finding: when fine-tuning is feasible, 
opting for simpler, more cost-effective models like GPT-3.5 or Llama 3 can be the best option. 
Conversely, if fine-tuning is not possible or prohibitively expensive, higher-performing models like 
GPT-4.0 may still be necessary. This trade-off between cost and performance underscores the 
importance of considering the opportunity to fine-tune in real-world applications, where resource 
constraints often dictate model selection.  

In analysing the effectiveness of Prompt Engineering (PE) and Retrieval-Augmented Generation (RAG 
via Dynamic Shoting), it is clear that their individual and combined impacts varied across different 
models. PE alone provided slight performance improvements, particularly in cases where the 
prompts were carefully designed to guide the model’s decision-making process. For example, when 
applied to GPT-3.5 with a chunk size of 20, PE helped the model achieve an AUROC of 73.2%, 
compared to 72.6% without PE, though the there was a slightly decrease in AVGPREC (24.4% with PE 
vs. 26.4%, but no statistical significative). This suggests that while PE can refine prediction accuracy 
slightly, its effect may be more pronounced in certain scenarios.  

Table 2: Predictive Modelling Comparison Results 

     Prompt Engineering (PE) RAG   

Model N° exp. N° shots Chunk size T RP CoT TaB ES DS AUROC AVGPREC 

RL 1 - -  -     79,1% ± 1,2% 39,3% ± 2,9% 

L-GBM 2 - -  -     81,7% ± 1,3% 45,2% ± 2,1% 

Llama 3 8B (without 
fine tuning) 

3 0 1 D ✔     73,6% ± 1,9% 27,3% ± 2,5% 

4 5 1 D ✔     73,4% ± 1,2% 28,5% ± 2,6% 

5 5 1 D ✔ ✔ ✔ ✔  73,5% ± 2,0% 28,6% ± 2,8% 

6 5 1 D ✔ ✔ ✔ ✔ ✔ 66,2% ± 1,5% 22,3% ± 2,1% 

7 5 20 D ✔     71,0% ± 1,7% 22,9% ± 1,5% 

8 10 1 D ✔     73,1% ± 2,0% 28,9% ± 3,0% 

9 20 1 D ✔     69,4% ± 1,5% 26,3% ± 2,3% 

GPT 3.5 (without fine 
tuning) 

10 0 1 D ✔     69,3% ± 1,9% 23,3% ± 2,1% 

11 0 20 D ✔     72,8% ± 1,9% 25,2% ± 1,9% 

12 0 100 D ✔     71,3% ± 1,7% 24,7% ± 1,9% 

13 5 1 D ✔     72,6% ± 2,1% 26,4% ± 2,1% 

14 5 20 D ✔     73,4% ± 1,6% 24,8% ± 1,7% 

15 5 100 D ✔     71,2% ± 2,1% 22,9% ± 2,3% 

16 5 1 D ✔ ✔ ✔ ✔  69,4% ± 2,5% 21,2% ± 2,6% 

17 5 20 D ✔ ✔ ✔ ✔  73,2% ± 1,9% 24,4% ± 2,0% 

18 5 20 D ✔ ✔ ✔ ✔ ✔ 68,5% ± 2,0% 26,5% ± 2,5% 

19 10 1 D ✔     71,9% ± 2,2% 23,9% ± 1,7% 

20 10 100 D ✔     69,7% ± 1,9% 22,4% ± 3,1% 
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21 20 1 D ✔     72,7% ± 2,2% 25,5% ± 2,5% 

22 20 100 D ✔     67,0% ± 1,6% 20,2% ± 2,3% 

GPT 4.0o (without fine 
tuning) 

23 0 1 D ✔     69,6% ± 0,9% 24,6% ± 1,4% 

24 5 1 D ✔     70,2% ± 1,6% 18,4% ± 1,4% 

25 5 20 D ✔     75,3% ± 1,7% 28,9% ± 2,5% 

GPT 4.0o mini (without 
fine tuning) 

26 0 1 D ✔     69,6% ± 0,9% 24,6% ± 1,4% 

27 5 1 D ✔     65,7% ± 1,5% 19,6% ± 1,1% 

28 5 20 D ✔     70,0% ± 1,9% 19,6% ± 1,3% 

GPT 3.5 (with fine 
tuning) 

29 0 1 D ✔     80,2% ± 1,6% 40,7% ± 2,2% 

30 0 1 0 ✔     80,3% ± 1,6% 40,7% ± 2,1% 

GPT 4.0o mini (with fine 
tuning) 

31 0 1 D ✔     80,1% ± 1,2% 40,8% ± 2,6% 

32 0 1 0 ✔     80,0% ± 1,1% 40,7% ± 2,6% 

Llama 3 8B (with fine 
tuning) 

33 0 1 D ✔     78,9% ± 1,1% 37,7% ± 2,9% 

34 0 1 0 ✔     73,1% ± 1,1% 21,4% ± 1,0% 
Symbology: 
T: temperature value, where “D” refers to the default setting. 
Prompt strategies: 

• RP: role play. 

• CoT: chain of thoughts. 

• TaB: take a breather 

• ES: emotional stimuli. 

• DS: dynamic shot or RAG. 

RAG-DS, on the other hand, showed a decrease in performance when applied independently. For 
example, the combination of PE + RAG resulted in lower AUROC (68.5%) and AVGPREC (26.5%) 
compared to using PE alone. The difference in AUROC is significative while in AVGPREC is not. This 
highlights that RAG's retrieval of additional context may not always synergize with the LLM's ability 
to process structured input, potentially introducing noise into the predictions. When PE and RAG 
were used together, the results were generally lower than when PE was applied independently, 
suggesting that these strategies may not complement each other as expected. It appears that in the 
context of structured financial data, PE has a more positive effect when applied on its own, while RAG 
might require further optimization or more relevant external data to boost performance effectively. 

4.2 Stability Testing 

Given the significant cost difference between GPT-3.5, GPT-4.0, and Llama 3—along with their 

statistically similar performance—we opted to use the fine-tuned versions of GPT-3.5 and Llama 3 

for subsequent experimentation phases. In this phase, we examined the variability in predicted 

default status across different temperature settings. Stability testing provided critical insights: as 

shown in Table 3, at a temperature of 0.5, both GPT-3.5 and Llama 3 exhibited noticeable variability, 

with the default status fluctuating across 100 predictions for the same borrower. Although GPT-3.5 

was somewhat more stable overall, it still displayed variability in borderline cases. 

When the temperature was set to 0.0, predictions were far more consistent, with randomness 
effectively eliminated across all repetitions. However, an important observation emerged: while we 
anticipated a reduction in variability with lower temperatures, the precise extent of this reduction 
was unknown beforehand. This “elasticity” measure—how much response variability decreases with 
temperature adjustments—represents a new and relatively undocumented area. It is one thing to 
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know that variability should decrease but quantifying exactly how much and under which conditions 
adds a novel layer of complexity to using LLMs in high-stakes prediction tasks. 

Table 3: Standard Deviation of predicted Scores. “Normal” vs “Default” Predictions 

Model Label Min Q25 Q50 Avg. Q75 Q90 Max 

GPT 3.5 with fine 
tunning 

(temp. 0.5) 

Total 0,0% 0,0% 0,0% 0,6% 0,0% 0,5% 8,2% 

Normal 0,0% 0,0% 0,0% 0,3% 0,0% 0,0% 7,0% 

Default 0,0% 0,0% 0,0% 2,3% 4,2% 6,4% 8,2% 

GPT 3.5 with  
fine tunning 

(temp. 0) 

Total 0,0% 0,0% 0,0% 0,1% 0,0% 0,0% 3,5% 

Normal 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,1% 

Default 0,0% 0,0% 0,0% 0,4% 0,2% 0,8% 3,5% 

Llama 3 (8B) with 
fine tunning 
 (temp. 0.5) 

Total 0,9% 9,5% 11,6% 10,9% 12,8% 13,4% 20,1% 

Normal 3,1% 9,9% 11,7% 11,2% 12,8% 13,5% 20,1% 

Default 0,9% 7,7% 9,4% 9,3% 12,6% 12,9% 13,2% 

Llama 3 (8B) 
with fine tunning 

 (temp. 0) 

Total 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 

Normal 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 

Default 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 

4.3 Explainability Analysis 

In the case of the LLM model, specifically GPT-3.5 with fine tuning, two key aspects were analysed: 
a) whether the model is capable of explaining the predictions it makes and b) the quality of those 
explanations. To assess this, the model was asked to provide the reasoning behind its decision for a 
sample of 100 randomly selected borrowers. 

Table 4 shows an example of the reasons provided by GPT-3.5 when predicting a client as being in 
default with a probability of 100%. It is evident that the first reason given by the model is inconsistent 
with the variable value, as it indicates the presence of delinquency when, in fact, no such delinquency 
exists in the data. However, the second reason aligns with the observed variables, as it accurately 
points to delinquency in the referred characteristics. Similarly, the last reason provided is consistent 
with the data, indicating the absence of a mortgage guarantee, which increases the risk. 

As mentioned, the sample of 100 explanations was reviewed blindly by a professional in the credit 
risk management field, who evaluated the predictions and reasoning provided by the GPT 3.5 model 
on a scale of 1 to 7 (with 7 being the highest score). The evaluation yielded an average score of 5.5, 
with a 95% confidence interval ranging from 5.3 to 5.7. These results suggest that GPT has the 
potential to provide reasonable analyses of credit risk assessments. However, some inconsistencies 
were noted, detailed as follows: 

1. The model may omit pertinent information from certain variables that could significantly 
impact the analysis. The omission of these data points may lead to an incomplete or biased 
interpretation, affecting the quality and precision of the conclusions drawn.  

2. The model's analysis may present inconsistencies between variable values and the resulting 
predictions. For example, the model may suggest that a financial burden of 100% is 
manageable in scenarios where it predicts a normal financial state, which appears 
contradictory and does not provide an adequate justification for its prediction. Such 
discrepancies can undermine the validity of the conclusions derived and highlight the need 
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for careful and critical review of the model’s outputs. In other cases, the justifications offered 
by the model, along with the values presented to support its analysis, do not align well with 
the actual financial condition of the borrower. For instance, the model may indicate that a 
borrower has no delinquency when, in fact, the analysed variables reflect the opposite. This 
discrepancy suggests a potential deficiency in the model’s ability to correctly interpret the 
available data, which could lead to erroneous conclusions that affect the credibility of the 
analysis. 

In conclusion, the results of this section indicate that the LLM model can generate a reasonable risk 
analysis, providing interpretability for its predictions. However, human oversight remains crucial, as 
the model can occasionally make errors or show inconsistencies in certain cases. Improvements in 
this area could be observed as these technologies continue to advance. 

Table 4: Example of reasons given by GPT for predicting an individual to be in default 

VARIABLES EXPLANATIONS 

#ID=20522://V1
=1.0//V2=0.0//
V3=8.4844//V4
=3.0//V5=0.556
3//V6=0.5563//
V7=1.3526//V8
=3.0//V9=2.0//
V10=0.0// 

{r1:"High delinquency levels: The debtor has a delinquency of more than 90 days in 
the system and between 3 to 1 month before the observation (V10 = 0.0), which 
indicates a severe default risk. This is a strong indicator of financial distress and 
inability to meet debt obligations. Impact: High delinquency levels significantly 
increase the likelihood of default. Opposite direction: A value of 1 for V10 would 
have indicated a higher default risk.", r2:"Consistent delinquency history: The 
debtor has a high average delinquency in days in the bank in the last 3 months (V9 
= 2.0) and a high delinquency in days in the bank in the last 6 months (V8 = 3.0), 
showing a pattern of ongoing payment issues. Impact: A consistent history of 
delinquency suggests a persistent inability to manage debt effectively. Opposite 
direction: Lower values for V9 and V8 would have implied a more stable payment 
behavior.", r3:"Lack of mortgage guarantee: The debtor does not have a mortgage 
guarantee (V2 = 0.0), which could indicate a lack of valuable collateral to secure the 
debt. Impact: Without a mortgage guarantee, the lender has less assurance of 
recovering the debt in case of default. Opposite direction: A value of 1 for V2 
would have provided additional security for the lender and potentially lowered the 
default risk."} 

V. Discussions on the implementation of LLM models for credit risk 
assessment 

The results of this study offer important insights into the potential application of Large Language 
Models (LLMs) like GPT-3.5, GPT-4.0, and Llama 3 in the banking sector, particularly in credit risk 
assessment. The findings align with current challenges and recommendations highlighted by 
regulatory bodies such as the European Banking Authority (EBA, 2023), which stress that the main 
obstacles to implementing machine learning models in internal models for capital requirements are 
the complexity of interpreting results, overfitting tendencies, and the shortage of skilled personnel 
for both model development and validation. 
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In the context of LLMs, these challenges are mirrored in our results, particularly regarding the trade-
offs between cost, performance, and interpretability. For example, our experiments demonstrated 
that while fine-tuning LLMs like GPT-3.5 and Llama 3 led to performance levels close to traditional 
models like LightGBM (AUROC: 80.2% and 80.1% respectively), the costs associated with more 
advanced models like GPT-4.0 were significantly higher without proportionate gains in performance. 
This suggests that, when fine-tuning is feasible, using more cost-effective models like GPT-3.5 or 
Llama 3 may be more practical for financial institutions. 

Furthermore, our experiments revealed that chunk size can have a significant impact on both 
performance and cost-efficiency. When testing chunk sizes of 20 borrowers per prediction, we found 
that performance (AUROC) and cost-effectiveness improved substantially compared to single-
borrower predictions. This optimization is especially important in large-scale credit risk assessments 
where real-time evaluation of multiple borrower profiles is needed. However, beyond a chunk size of 
20, we observed diminishing returns in performance improvements, suggesting that financial 
institutions should balance between chunk size and precision for optimal results. Additionally, the 
use of interaction strategies like Prompt Engineering (PE) and Retrieval-Augmented Generation (RAG) 
showed mixed results. PE improved model accuracy slightly by guiding the model's decision-making 
process, as seen in the AUROC increase for GPT-3.5. However, RAG's addition did not lead to the 
expected performance gains and sometimes introduced noise into the predictions, especially when 
applied together with PE. This highlights that while interaction strategies can refine LLM predictions, 
they need further optimization, especially in the context of structured financial data. 

Interpretability remains a significant challenge for LLMs in the banking sector. Although the models 
were able to generate explanations for their predictions, as shown in the explainability analysis with 
GPT-3.5 (which received an average rating of 5.5/7 from an expert), inconsistencies and errors 
highlight the need for human oversight. For example, in some cases, the model omitted critical 
information or provided contradictory justifications, signalling potential pitfalls in automating credit 
risk assessments. 

In conclusion, LLMs offer promising opportunities for credit risk modelling in the banking sector, 
particularly when fine-tuned to specific tasks. However, challenges related to cost, variability in 
predictions, and the need for human oversight for interpretability issues must be addressed before 
widespread implementation. These findings suggest that banks should proceed cautiously, 
integrating LLMs with traditional models and addressing concerns related to scalability, transparency, 
and regulatory compliance. 

VI. Conclusions 

The present study provides a comprehensive empirical analysis of the capabilities of Large Language 
Models (LLMs) in credit risk assessment, comparing their performance against traditional 
methodologies and exploring various configurations, including fine-tuning and prompt engineering. 
The results show that LLMs, when properly fine-tuned, can achieve performance levels on par with 
traditional models such as logistic regression and LightGBM, with AUROC values nearing 80%. 

One of the study's main contributions is its analysis of the quality of the explanations generated by 
LLMs. Our findings show that LLMs can provide interpretable and valuable insights for credit risk 
assessments, offering a fast and efficient alternative to traditional explainability techniques like SHAP. 
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However, occasional inconsistencies in the explanations highlight the need for human oversight to 
validate and critique the model’s outputs. 

From a regulatory perspective, this study advances the conversation on the applicability of cutting-
edge technologies in risk management, offering empirical evidence of their functionality. However, 
for wider adoption of advanced models, financial institutions must first consolidate the use of simpler 
and more transparent techniques. LLMs offer a promising route forward, but human involvement 
remains crucial for ensuring that explanations and predictions meet the high standards required for 
regulatory compliance. 

Despite these significant contributions, some limitations remain. The dataset used in this study is 
based on pre-pandemic Chilean credit data, and it focuses on a specific type of credit. Future research 
should explore how these models perform in other markets and credit types. Furthermore, the 
unavailability of GPT-4.0o for fine-tuning and the absence of larger open-source models like Llama 3 
405B represent areas for further study. Exploring more advanced RAG configurations that leverage 
extended context lengths could offer a similar performance to fine-tuning at a lower implementation 
cost. 

Finally, the ability of LLMs to provide explanations for their predictions opens new opportunities for 
practical applications, such as assisting customers during the credit application process and 
enhancing the transparency of credit evaluations. This not only improves customer experience but 
also provides financial sector workers with useful tools to complement their expertise. The continued 
development of LLMs and their integration into financial risk management represents a key area for 
both academic inquiry and industry adoption in the years to come. 
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Appendix 1: Instructions and data provided for the explainability 
analysis 

A former professional in credit risk management was provided with the below information to conduct 

the explainability analysis of the output produced by the LLM model: 

Instructions: 

Your mission will be to evaluate the assessments of a credit risk analyst who has been trained and 

hired to predict the credit risk of consumer loan debtors at banking institutions in Chile. Specifically, 

the analyst has been tasked with forecasting debtor default, defined as the occurrence of a 90-day 

delinquency within a prospective 12-month window from the observation month. For example, if an 

individual's variables are observed in March 2023, the analyst indicates whether a delinquency of over 

90 days will occur in the period from April 2023 to March 2024, inclusive. 

For each evaluation request, the analyst is required to provide three results: 

• Probability of default: This corresponds to a value between 0% and 100%, inclusive of both 

extremes, which represents the probability the analyst predicts that the default event will 

occur. Its complement (i.e., 100% minus this value) corresponds to the probability that the 

default will not occur, associated with the label "normal." In some cases, the probability may 

be 50%, indicating indecision between default or normal status. 

• Status: This is the status assigned and predicted by the analyst, which correlates with the 

previous probability. The possible values are default, normal, or default/normal. The latter 

occurs when the analyst is undecided (50% probability). 

• Reasons: The analyst provides the top three reasons for the previous prediction. For each 

reason, the analyst identifies the variables used in their reasoning, the values of the variables 

that would have led to the opposite prediction, and any interactions with other variables if 

applicable. 

For the evaluation, the analyst considers the following variables: 

• V1: A binary variable that takes the value 1 when the client has a delinquency of more than 

30 days in the system and the month before the observation. 

• V2: A binary variable that takes the value 1 when the client has a mortgage guarantee and 0 

otherwise. 

• V3: Debt-to-income ratio for the month, excluding off balance sheet exposures and 

commercial debt. 

• V4: Days of delinquency at the bank in the last 12 months, coded as follows: 0 equals 0 days, 

1 equals 1 to 30 days, 2 equals 31 to 60 days, 3 equals 61 to 89 days, and 4 or more equals 

over 90 days of delinquency. 

• V5: Financial burden for the month, including off balance sheet exposures but excluding 

commercial debt. 
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• V6: Financial burden for the month, including off balance sheet exposures and commercial 

debt. 

• V7: Ratio of the observed month's debt relative to the average of the last 12 months, 

considering all debt in the system. 

• V8: Days of delinquency at the bank in the last 6 months, coded as follows: 0 equals 0 days, 1 

equals 1 to 30 days, 2 equals 31 to 60 days, 3 equals 61 to 89 days, and 4 or more equals over 

90 days of delinquency. 

• V9: Average days of delinquency at the bank in the last 3 months, coded as follows: 0 equals 

0 days, less than or equal to 1 equals 1 to 30 days, between 1 and 2 equals 31 to 60 days, 

between 2 and 3 equals 61 to 89 days, and 3 or more equals over 90 days of delinquency. 

• V10: A binary variable that takes the value 1 when the client has a delinquency of over 90 

days in the system and between 3 to 1 month before the observation. 

In the following, you will be provided with a table containing evaluations made by the analyst, with 

the following columns: 

• ID: a fictitious ID assigned to the debtor. 

• Variables: the variables observed at the time the evaluation was requested from the analyst. 

• Probability: predicted probability of default. 

• Status: status assigned by the analyst. 

• Reasons: reasons for the analyst’s prediction. 

Your task will then be to rate the evaluations made by the analyst on a scale from 1 to 7, where 1 

means that the evaluation and reasons provided are not at all reasonable according to the observed 

variables, and thus “very poor,” while 7 means that the evaluation is highly appropriate both in the 

assignment of status and in the reasons and their relationship to the debtor’s variables, and thus “very 

good.” 

For this, you will need to fill in the "Rating" column with the score assigned by you. Finally, there is a 

last column, titled "Observations," for any comments you may have on each case. 

Please complete this exercise thoughtfully. Your evaluation is key to the research objective. 

Evaluations to be performed:  

The table with the evaluations to be performed is as follows: 

ID VARIABLES PROBABILITY STATUS REASONS RATING OBSERVATIONS 
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Appendix 2: Results of the hypothesis test for the average difference in AUROC 
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EX - 1 - -2,6%* 5,5%* 5,7%* 5,6%* 12,9%* 8,1%* 6,1%* 9,7%* 9,8%* 6,3%* 7,8%* 6,6%* 5,7%* 8,0%* 9,7%* 6,0%* 10,7%* 7,3%* 9,5%* 6,4%* 12,1%* 9,6%* 8,9%* 3,8%* 9,6%* 13,4%* 9,1%* -1,1% -1,2% -0,9% -0,9% 0,2% 6,0%* 

EX - 2 2,6%* - 8,1%* 8,3%* 8,2%* 15,5%* 10,7%* 8,7%* 12,3%* 12,4%* 8,9%* 10,4%* 9,1%* 8,3%* 10,5%* 12,3%* 8,6%* 13,2%* 9,9%* 12,1%* 9,0%* 14,7%* 12,2%* 11,5%* 6,4%* 12,2%* 16,0%* 11,7%* 1,5% 1,4% 1,7% 1,7% 2,8%* 8,6%* 

EX - 3 -5,5%* -8,1%* - 0,2% 0,1% 7,4%* 2,6% 0,6% 4,2%* 4,3%* 0,8% 2,3% 1,0% 0,2% 2,4% 4,2%* 0,5% 5,1%* 1,8% 4,0%* 0,9% 6,6%* 4,1%* 3,4%* -1,7% 4,1%* 7,9%* 3,6%* -6,6%* -6,7%* -6,4%* -6,4%* -5,3%* 0,5% 

EX - 4 -5,7%* -8,3%* -0,2% - -0,1% 7,2%* 2,4%* 0,4% 4,0%* 4,1%* 0,6% 2,1%* 0,8% 0,0% 2,3% 4,0%* 0,3% 4,9%* 1,6% 3,8%* 0,7% 6,4%* 3,9%* 3,2%* -1,9% 3,9%* 7,7%* 3,4%* -6,8%* -6,9%* -6,6%* -6,6%* -5,5%* 0,3% 

EX - 5 -5,6%* -8,2%* -0,1% 0,1% - 7,3%* 2,5%* 0,4% 4,1%* 4,2%* 0,7% 2,2% 0,9% 0,1% 2,3% 4,1%* 0,3% 5,0%* 1,6% 3,8%* 0,8% 6,5%* 3,9%* 3,3%* -1,8% 3,9%* 7,8%* 3,5%* -6,7%* -6,8%* -6,5%* -6,5%* -5,4%* 0,4% 

EX - 6 -12,9%* -15,5%* -7,4%* -7,2%* -7,3%* - -4,8%* -6,8%* -3,2%* -3,1%* -6,6%* -5,1%* -6,3%* -7,2%* -4,9%* -3,2% -6,9%* -2,2% -5,6%* -3,4%* -6,5%* -0,8% -3,3%* -4,0%* -9,1%* -3,3%* 0,5% -3,8%* -14,0%* -14,0%* -13,8%* -13,7%* -12,6%* -6,9%* 

EX - 7 -8,1%* -10,7%* -2,6% -2,4%* -2,5%* 4,8%* - -2,0%* 1,6%* 1,7%* -1,8% -0,3% -1,5% -2,4%* -0,1% 1,6% -2,1% 2,6%* -0,8% 1,4% -1,7% 4,0%* 1,5% 0,8% -4,3%* 1,5% 5,3%* 1,0% -9,2%* -9,3%* -9,0%* -8,9%* -7,8%* -2,1%* 

EX - 8 -6,1%* -8,7%* -0,6% -0,4% -0,4% 6,8%* 2,0%* - 3,7%* 3,7%* 0,2% 1,7% 0,5% -0,4% 1,9% 3,6%* -0,1% 4,6%* 1,2% 3,4%* 0,3% 6,1%* 3,5%* 2,8%* -2,3% 3,5%* 7,3%* 3,0%* -7,2%* -7,2%* -7,0%* -6,9%* -5,8%* -0,1% 

EX - 9 -9,7%* -12,3%* -4,2%* -4,0%* -4,1%* 3,2%* -1,6%* -3,7%* - 0,1% -3,4%* -1,9%* -3,2%* -4,0%* -1,8% 0,0% -3,8%* 0,9% -2,5%* -0,3% -3,3%* 2,4% -0,2% -0,8% -5,9%* -0,2% 3,7%* -0,6% -10,8%* -10,9%* -10,6%* -10,6%* -9,5%* -3,7%* 

EX - 10 -9,8%* -12,4%* -4,3%* -4,1%* -4,2%* 3,1%* -1,7%* -3,7%* -0,1% - -3,5%* -2,0%* -3,3%* -4,1%* -1,9% -0,1% -3,8%* 0,8% -2,5% -0,3% -3,4%* 2,3% -0,2% -0,9% -6,0%* -0,2% 3,6%* -0,7% -10,9%* -11,0%* -10,7%* -10,7%* -9,6%* -3,8%* 

EX - 11 -6,3%* -8,9%* -0,8% -0,6% -0,7% 6,6%* 1,8% -0,2% 3,4%* 3,5%* - 1,5% 0,2% -0,6% 1,6% 3,4%* -0,3% 4,3%* 1,0% 3,2%* 0,1% 5,8%* 3,3%* 2,6%* -2,5%* 3,3%* 7,1%* 2,8%* -7,4%* -7,5%* -7,2%* -7,2%* -6,1%* -0,3% 

EX - 12 -7,8%* -10,4%* -2,3% -2,1%* -2,2% 5,1%* 0,3% -1,7% 1,9%* 2,0%* -1,5% - -1,3% -2,1%* 0,1% 1,9% -1,8% 2,8%* -0,5% 1,7% -1,4% 4,3%* 1,7% 1,1% -4,0%* 1,7% 5,6%* 1,3% -8,9%* -9,0%* -8,7%* -8,7%* -7,6%* -1,8%* 

EX - 13 -6,6%* -9,1%* -1,0% -0,8% -0,9% 6,3%* 1,5% -0,5% 3,2%* 3,3%* -0,2% 1,3% - -0,8% 1,4% 3,1%* -0,6% 4,1%* 0,7%* 2,9%* -0,1% 5,6%* 3,0%* 2,4%* -2,7%* 3,0%* 6,8%* 2,5%* -7,7%* -7,7%* -7,5%* -7,4%* -6,3%* -0,6% 

EX - 14 -5,7%* -8,3%* -0,2% 0,0% -0,1% 7,2%* 2,4%* 0,4% 4,0%* 4,1%* 0,6% 2,1%* 0,8% - 2,3%* 4,0%* 0,3% 5,0%* 1,6% 3,8%* 0,7% 6,4%* 3,9%* 3,2%* -1,9%* 3,9%* 7,7%* 3,4%* -6,8%* -6,9%* -6,6%* -6,6%* -5,5%* 0,3% 

EX - 15 -8,0%* -10,5%* -2,4% -2,3% -2,3% 4,9%* 0,1% -1,9% 1,8% 1,9% -1,6% -0,1% -1,4% -2,3%* - 1,7% -2,0% 2,7%* -0,7% 1,5%* -1,6% 4,2%* 1,6% 1,0% -4,1%* 1,6% 5,4%* 1,1% -9,1%* -9,1%* -8,9%* -8,8%* -7,7%* -2,0% 

EX - 16 -9,7%* -12,3%* -4,2%* -4,0%* -4,1%* 3,2% -1,6% -3,6%* 0,0% 0,1% -3,4%* -1,9% -3,1%* -4,0%* -1,7% - -3,7%* 1,0% -2,4%* -0,2% -3,3%* 2,4%* -0,1% -0,8% -5,9%* -0,1% 3,7%* -0,6% -10,8%* -10,8%* -10,6%* -10,5%* -9,4%* -3,7%* 

EX - 17 -6,0%* -8,6%* -0,5% -0,3% -0,3% 6,9%* 2,1% 0,1% 3,8%* 3,8%* 0,3% 1,8% 0,6% -0,3% 2,0% 3,7%* - 4,7%* 1,3% 3,5%* 0,4% 6,2%* 3,6%* 3,0%* -2,2%* 3,6%* 7,4%* 3,1%* -7,1%* -7,1%* -6,9%* -6,8%* -5,7%* 0,0% 

EX - 18 -10,7%* -13,2%* -5,1%* -4,9%* -5,0%* 2,2% -2,6%* -4,6%* -0,9% -0,8% -4,3%* -2,8%* -4,1%* -5,0%* -2,7%* -1,0% -4,7%* - -3,4%* -1,2% -4,2%* 1,5% -1,1% -1,7% -6,8%* -1,1% 2,7%* -1,6% -11,8%* -11,8%* -11,6%* -11,5%* -10,4%* -4,7%* 

EX - 19 -7,3%* -9,9%* -1,8% -1,6% -1,6% 5,6%* 0,8% -1,2% 2,5%* 2,5% -1,0% 0,5% -0,7%* -1,6% 0,7% 2,4%* -1,3% 3,4%* - 2,2%* -0,9% 4,9%* 2,3% 1,7% -3,5%* 2,3% 6,1%* 1,8% -8,4%* -8,4%* -8,2%* -8,1%* -7,0%* -1,3% 

EX - 20 -9,5%* -12,1%* -4,0%* -3,8%* -3,8%* 3,4%* -1,4% -3,4%* 0,3% 0,3% -3,2%* -1,7% -2,9%* -3,8%* -1,5%* 0,2% -3,5%* 1,2% -2,2%* - -3,1%* 2,7%* 0,1% -0,6% -5,7%* 0,1% 3,9%* -0,4% -10,6%* -10,6%* -10,4%* -10,3%* -9,2%* -3,5%* 

EX - 21 -6,4%* -9,0%* -0,9% -0,7% -0,8% 6,5%* 1,7% -0,3% 3,3%* 3,4%* -0,1% 1,4% 0,1% -0,7% 1,6% 3,3%* -0,4% 4,2%* 0,9% 3,1%* - 5,7%* 3,2%* 2,5%* -2,6%* 3,2%* 7,0%* 2,7%* -7,5%* -7,6%* -7,3%* -7,3%* -6,2%* -0,4% 

EX - 22 -12,1%* -14,7%* -6,6%* -6,4%* -6,5%* 0,8% -4,0%* -6,1%* -2,4% -2,3% -5,8%* -4,3%* -5,6%* -6,4%* -4,2%* -2,4%* -6,2%* -1,5% -4,9%* -2,7%* -5,7%* - -2,6%* -3,2%* -8,3%* -2,6%* 1,3% -3,0%* -13,2%* -13,3%* -13,1%* -13,0%* -11,9%* -6,2%* 

EX - 23 -9,6%* -12,2%* -4,1%* -3,9%* -3,9%* 3,3%* -1,5% -3,5%* 0,2% 0,2% -3,3%* -1,7% -3,0%* -3,9%* -1,6% 0,1% -3,6%* 1,1% -2,3% -0,1% -3,2%* 2,6%* - -0,6% -5,7%* 0,0%* 3,8%* -0,5% -10,7%* -10,7%* -10,5%* -10,4%* -9,3%* -3,6%* 

EX - 24 -8,9%* -11,5%* -3,4%* -3,2%* -3,3%* 4,0%* -0,8% -2,8%* 0,8% 0,9% -2,6%* -1,1% -2,4%* -3,2%* -1,0% 0,8% -3,0%* 1,7% -1,7% 0,6% -2,5%* 3,2%* 0,6% - -5,1%* 0,6% 4,5%* 0,2% -10,0%* -10,1%* -9,8%* -9,8%* -8,7%* -2,9%* 

EX - 25 -3,8%* -6,4%* 1,7% 1,9% 1,8% 9,1%* 4,3%* 2,3% 5,9%* 6,0%* 2,5%* 4,0%* 2,7%* 1,9%* 4,1%* 5,9%* 2,2%* 6,8%* 3,5%* 5,7%* 2,6%* 8,3%* 5,7%* 5,1%* - 5,7%* 9,6%* 5,3%* -4,9%* -5,0%* -4,7%* -4,7%* -3,6%* 2,2% 

EX - 26 -9,6%* -12,2%* -4,1%* -3,9%* -3,9%* 3,3%* -1,5% -3,5%* 0,2% 0,2% -3,3%* -1,7% -3,0%* -3,9%* -1,6% 0,1% -3,6%* 1,1% -2,3% -0,1% -3,2%* 2,6%* 0,0%* -0,6% -5,7%* - 3,8%* -0,5% -10,7%* -10,7%* -10,5%* -10,4%* -9,3%* -3,6%* 

EX - 27 -13,4%* -16,0%* -7,9%* -7,7%* -7,8%* -0,5% -5,3%* -7,3%* -3,7%* -3,6%* -7,1%* -5,6%* -6,8%* -7,7%* -5,4%* -3,7%* -7,4%* -2,7%* -6,1%* -3,9%* -7,0%* -1,3% -3,8%* -4,5%* -9,6%* -3,8%* - -4,3%* -14,5%* -14,6%* -14,3%* -14,2%* -13,1%* -7,4%* 

EX - 28 -9,1%* -11,7%* -3,6%* -3,4%* -3,5%* 3,8%* -1,0% -3,0%* 0,6% 0,7% -2,8%* -1,3% -2,5%* -3,4%* -1,1% 0,6% -3,1%* 1,6% -1,8% 0,4% -2,7%* 3,0%* 0,5% -0,2% -5,3%* 0,5% 4,3%* - -10,2%* -10,3%* -10,0%* -10,0%* -8,9%* -3,1%* 

EX - 29 1,1% -1,5% 6,6%* 6,8%* 6,7%* 14,0%* 9,2%* 7,2%* 10,8%* 10,9%* 7,4%* 8,9%* 7,7%* 6,8%* 9,1%* 10,8%* 7,1%* 11,8%* 8,4%* 10,6%* 7,5%* 13,2%* 10,7%* 10,0%* 4,9%* 10,7%* 14,5%* 10,2%* - 0,0% 0,2% 0,3% 1,4% 7,1%* 

EX - 30 1,2% -1,4% 6,7%* 6,9%* 6,8%* 14,0%* 9,3%* 7,2%* 10,9%* 11,0%* 7,5%* 9,0%* 7,7%* 6,9%* 9,1%* 10,8%* 7,1%* 11,8%* 8,4%* 10,6%* 7,6%* 13,3%* 10,7%* 10,1%* 5,0%* 10,7%* 14,6%* 10,3%* 0,0% - 0,2% 0,3% 1,4%* 7,1%* 

EX - 31 0,9% -1,7% 6,4%* 6,6%* 6,5%* 13,8%* 9,0%* 7,0%* 10,6%* 10,7%* 7,2%* 8,7%* 7,5%* 6,6%* 8,9%* 10,6%* 6,9%* 11,6%* 8,2%* 10,4%* 7,3%* 13,1%* 10,5%* 9,8%* 4,7%* 10,5%* 14,3%* 10,0%* -0,2% -0,2% - 0,1% 1,2% 6,9%* 

EX - 32 0,9% -1,7% 6,4%* 6,6%* 6,5%* 13,7%* 8,9%* 6,9%* 10,6%* 10,7%* 7,2%* 8,7%* 7,4%* 6,6%* 8,8%* 10,5%* 6,8%* 11,5%* 8,1%* 10,3%* 7,3%* 13,0%* 10,4%* 9,8%* 4,7%* 10,4%* 14,2%* 10,0%* -0,3% -0,3% -0,1% - 1,1% 6,8%* 

EX - 33 -0,2% -2,8%* 5,3%* 5,5%* 5,4%* 12,6%* 7,8%* 5,8%* 9,5%* 9,6%* 6,1%* 7,6%* 6,3%* 5,5%* 7,7%* 9,4%* 5,7%* 10,4%* 7,0%* 9,2%* 6,2%* 11,9%* 9,3%* 8,7%* 3,6%* 9,3%* 13,1%* 8,9%* -1,4% -1,4%* -1,2% -1,1% - 5,7%* 

EX - 34 -6,0%* -8,6%* -0,5% -0,3% -0,4% 6,9%* 2,1%* 0,1% 3,7%* 3,8%* 0,3% 1,8%* 0,6% -0,3% 2,0% 3,7%* 0,0% 4,7%* 1,3% 3,5%* 0,4% 6,2%* 3,6%* 2,9%* -2,2% 3,6%* 7,4%* 3,1%* -7,1%* -7,1%* -6,9%* -6,8%* -5,7%* - 
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Appendix 3: Results of the hypothesis test for the average difference in AVGPREC 
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EX - 1 - -5,9%* 12,0%* 10,8%* 10,7%* 17,0%* 16,4%* 10,4%* 13,0%* 16,0%* 14,1%* 14,6%* 12,9%* 14,5%* 16,4%* 18,1%* 14,9%* 12,8%* 15,4%* 16,9%* 13,8%* 19,1%* 14,7%* 20,9%* 10,5%* 14,7%* 19,7%* 19,7%* -1,4% -1,3% -1,5% -1,4% 1,6% 17,9%* 

EX - 2 5,9%* - 17,9%* 16,7%* 16,6%* 22,9%* 22,3%* 16,3%* 18,9%* 21,9%* 20,0%* 20,5%* 18,8%* 20,5%* 22,3%* 24,0%* 20,9%* 18,7%* 21,3%* 22,8%* 19,7%* 25,0%* 20,6%* 26,8%* 16,4%* 20,6%* 25,6%* 25,6%* 4,5%* 4,6%* 4,4%* 4,5%* 7,5%* 23,8%* 

EX - 3 -12,0%* -17,9%* - -1,2% -1,4% 5,0%* 4,4%* -1,6% 1,0% 4,0%* 2,1% 2,6%* 0,9% 2,5%* 4,4%* 6,1%* 2,9%* 0,8% 3,4% 4,9%* 1,7% 7,1%* 2,6%* 8,9%* -1,6% 2,6%* 7,6%* 7,7%* -13,4%* -13,4%* -13,5%* -13,4%* -10,4%* 5,9%* 

EX - 4 -10,8%* -16,7%* 1,2% - -0,2% 6,2%* 5,6%* -0,4% 2,2%* 5,2%* 3,3%* 3,8%* 2,1% 3,7%* 5,6%* 7,3%* 4,1%* 2,0% 4,6%* 6,1%* 2,9% 8,3%* 3,8%* 10,1%* -0,4% 3,8%* 8,8%* 8,9%* -12,2%* -12,2%* -12,3%* -12,2%* -9,2%* 7,1%* 

EX - 5 -10,7%* -16,6%* 1,4% 0,2% - 6,3%* 5,7%* -0,2% 2,3% 5,3%* 3,4%* 4,0%* 2,2% 3,9%* 5,8%* 7,4%* 4,3%* 2,1% 4,7%* 6,2%* 3,1% 8,5%* 4,0%* 10,3%* -0,2% 4,0%* 9,0%* 9,0%* -12,1%* -12,0%* -12,2%* -12,1%* -9,1%* 7,2%* 

EX - 6 -17,0%* -22,9%* -5,0%* -6,2%* -6,3%* - -0,6% -6,6%* -4,0%* -1,0% -2,9%* -2,4% -4,1%* -2,5% -0,6% 1,1% -2,1% -4,2%* -1,6% -0,1% -3,2% 2,1% -2,3% 3,9%* -6,6%* -2,3% 2,7%* 2,7% -18,4%* -18,4%* -18,5%* -18,4%* -15,4%* 0,9% 

EX - 7 -16,4%* -22,3%* -4,4%* -5,6%* -5,7%* 0,6% - -6,0%* -3,4%* -0,4% -2,3% -1,8%* -3,5%* -1,8%* 0,0% 1,7% -1,4% -3,6%* -1,0% 0,5% -2,6% 2,8%* -1,7% 4,6%* -5,9%* -1,7% 3,3%* 3,3%* -17,8%* -17,7%* -17,9%* -17,8%* -14,8%* 1,5% 

EX - 8 -10,4%* -16,3%* 1,6% 0,4% 0,2% 6,6%* 6,0%* - 2,6%* 5,6%* 3,7%* 4,2%* 2,5% 4,1%* 6,0%* 7,7%* 4,5%* 2,4% 5,0%* 6,5%* 3,3% 8,7%* 4,2%* 10,5%* 0,0% 4,2%* 9,2%* 9,3%* -11,8%* -11,8%* -11,9%* -11,8%* -8,8%* 7,4%* 

EX - 9 -13,0%* -18,9%* -1,0% -2,2%* -2,3% 4,0%* 3,4%* -2,6%* - 3,0%* 1,1% 1,6% -0,1% 1,5% 3,4%* 5,1%* 1,9% -0,2% 2,4% 3,9% 0,8% 6,1%* 1,7% 7,9%* -2,6% 1,7% 6,7%* 6,7%* -14,4%* -14,4%* -14,5%* -14,4%* -11,4%* 4,9%* 

EX - 10 -16,0%* -21,9%* -4,0%* -5,2%* -5,3%* 1,0% 0,4% -5,6%* -3,0%* - -1,9%* -1,4% -3,1%* -1,5% 0,4% 2,1% -1,1% -3,2% -0,6% 0,9% -2,2% 3,1% -1,3% 4,9%* -5,5%* -1,3% 3,7%* 3,7%* -17,4%* -17,3%* -17,5%* -17,4%* -14,4%* 1,9% 

EX - 11 -14,1%* -20,0%* -2,1% -3,3%* -3,4%* 2,9%* 2,3% -3,7%* -1,1% 1,9%* - 0,5% -1,2% 0,4% 2,3% 4,0%* 0,8% -1,3% 1,3% 2,8% -0,3% 5,0%* 0,6% 6,8%* -3,7%* 0,6% 5,6%* 5,6%* -15,5%* -15,5%* -15,6%* -15,5%* -12,5%* 3,8%* 

EX - 12 -14,6%* -20,5%* -2,6%* -3,8%* -4,0%* 2,4% 1,8%* -4,2%* -1,6% 1,4% -0,5% - -1,7% -0,1% 1,8% 3,5%* 0,3% -1,8% 0,8% 2,3% -0,9% 4,5%* 0,0% 6,3%* -4,2%* 0,0% 5,0%* 5,1%* -16,0%* -16,0%* -16,1%* -16,0%* -13,0%* 3,2%* 

EX - 13 -12,9%* -18,8%* -0,9% -2,1% -2,2% 4,1%* 3,5%* -2,5% 0,1% 3,1%* 1,2% 1,7% - 1,6% 3,5%* 5,2%* 2,0% -0,1% 2,5%* 4,0%* 0,9% 6,2%* 1,8% 8,0%* -2,4% 1,8% 6,8%* 6,8%* -14,3%* -14,2%* -14,4%* -14,3%* -11,3%* 5,0%* 

EX - 14 -14,5%* -20,5%* -2,5%* -3,7%* -3,9%* 2,5% 1,8%* -4,1%* -1,5% 1,5% -0,4% 0,1% -1,6% - 1,9% 3,5%* 0,4% -1,8% 0,8% 2,3% -0,8% 4,6%* 0,1% 6,4%* -4,1%* 0,1% 5,1%* 5,2%* -15,9%* -15,9%* -16,1%* -15,9%* -12,9%* 3,3%* 

EX - 15 -16,4%* -22,3%* -4,4%* -5,6%* -5,8%* 0,6% 0,0% -6,0%* -3,4%* -0,4% -2,3% -1,8% -3,5%* -1,9% - 1,7% -1,5% -3,6%* -1,0% 0,5% -2,7% 2,7%* -1,8% 4,5%* -6,0%* -1,8% 3,2%* 3,3%* -17,8%* -17,8%* -17,9%* -17,8%* -14,8%* 1,5% 

EX - 16 -18,1%* -24,0%* -6,1%* -7,3%* -7,4%* -1,1% -1,7% -7,7%* -5,1%* -2,1% -4,0%* -3,5%* -5,2%* -3,5%* -1,7% - -3,1%* -5,3%* -2,7%* -1,2% -4,3%* 1,1% -3,4%* 2,9% -7,6%* -3,4%* 1,6% 1,6% -19,5%* -19,4%* -19,6%* -19,5%* -16,5%* -0,2% 

EX - 17 -14,9%* -20,9%* -2,9%* -4,1%* -4,3%* 2,1% 1,4% -4,5%* -1,9% 1,1% -0,8% -0,3% -2,0% -0,4% 1,5% 3,1%* - -2,2% 0,4% 1,9% -1,2% 4,2%* -0,3% 6,0%* -4,5%* -0,3% 4,7%* 4,8%* -16,3%* -16,3%* -16,5%* -16,3%* -13,3%* 2,9%* 

EX - 18 -12,8%* -18,7%* -0,8% -2,0% -2,1% 4,2%* 3,6%* -2,4% 0,2% 3,2% 1,3% 1,8% 0,1% 1,8% 3,6%* 5,3%* 2,2% - 2,6%* 4,1% 1,0% 6,3%* 1,9% 8,1%* -2,3% 1,9% 6,9%* 6,9%* -14,2%* -14,1%* -14,3%* -14,2%* -11,2%* 5,1%* 

EX - 19 -15,4%* -21,3%* -3,4% -4,6%* -4,7%* 1,6% 1,0% -5,0%* -2,4% 0,6% -1,3% -0,8% -2,5%* -0,8% 1,0% 2,7%* -0,4% -2,6%* - 1,5% -1,6% 3,7%* -0,7% 5,6%* -4,9%* -0,7% 4,3%* 4,3%* -16,8%* -16,7%* -16,9%* -16,8%* -13,8%* 2,5%* 

EX - 20 -16,9%* -22,8%* -4,9%* -6,1%* -6,2%* 0,1% -0,5% -6,5%* -3,9% -0,9% -2,8% -2,3% -4,0%* -2,3% -0,5% 1,2% -1,9% -4,1% -1,5% - -3,1% 2,3%* -2,2% 4,1% -6,4%* -2,2% 2,8% 2,8%* -18,3%* -18,2%* -18,4%* -18,3%* -15,3%* 1,0% 

EX - 21 -13,8%* -19,7%* -1,7% -2,9% -3,1% 3,2% 2,6% -3,3% -0,8% 2,2% 0,3% 0,9% -0,9% 0,8% 2,7% 4,3%* 1,2% -1,0% 1,6% 3,1% - 5,4%* 0,9% 7,2%* -3,3% 0,9% 5,9%* 5,9%* -15,2%* -15,1%* -15,3%* -15,1%* -12,2%* 4,1%* 

EX - 22 -19,1%* -25,0%* -7,1%* -8,3%* -8,5%* -2,1% -2,8%* -8,7%* -6,1%* -3,1% -5,0%* -4,5%* -6,2%* -4,6%* -2,7%* -1,1% -4,2%* -6,3%* -3,7%* -2,3%* -5,4%* - -4,5%* 1,8% -8,7%* -4,5%* 0,5% 0,6% -20,5%* -20,5%* -20,6%* -20,5%* -17,5%* -1,3% 

EX - 23 -14,7%* -20,6%* -2,6%* -3,8%* -4,0%* 2,3% 1,7% -4,2%* -1,7% 1,3% -0,6% 0,0% -1,8% -0,1% 1,8% 3,4%* 0,3% -1,9% 0,7% 2,2% -0,9% 4,5%* - 6,3%* -4,2%* 0,0%* 5,0%* 5,0%* -16,1%* -16,0%* -16,2%* -16,0%* -13,1%* 3,2%* 

EX - 24 -20,9%* -26,8%* -8,9%* -10,1%* -10,3%* -3,9%* -4,6%* -10,5%* -7,9%* -4,9%* -6,8%* -6,3%* -8,0%* -6,4%* -4,5%* -2,9% -6,0%* -8,1%* -5,6%* -4,1% -7,2%* -1,8% -6,3%* - -10,5%* -6,3%* -1,3% -1,2% -22,3%* -22,3%* -22,5%* -22,3%* -19,3%* -3,1%* 

EX - 25 -10,5%* -16,4%* 1,6% 0,4% 0,2% 6,6%* 5,9%* 0,0% 2,6% 5,5%* 3,7%* 4,2%* 2,4% 4,1%* 6,0%* 7,6%* 4,5%* 2,3% 4,9%* 6,4%* 3,3% 8,7%* 4,2%* 10,5%* - 4,2%* 9,2%* 9,2%* -11,8%* -11,8%* -12,0%* -11,8%* -8,8%* 7,4%* 

EX - 26 -14,7%* -20,6%* -2,6%* -3,8%* -4,0%* 2,3% 1,7% -4,2%* -1,7% 1,3% -0,6% 0,0% -1,8% -0,1% 1,8% 3,4%* 0,3% -1,9% 0,7% 2,2% -0,9% 4,5%* 0,0%* 6,3%* -4,2%* - 5,0%* 5,0%* -16,1%* -16,0%* -16,2%* -16,0%* -13,1%* 3,2%* 

EX - 27 -19,7%* -25,6%* -7,6%* -8,8%* -9,0%* -2,7%* -3,3%* -9,2%* -6,7%* -3,7%* -5,6%* -5,0%* -6,8%* -5,1%* -3,2%* -1,6% -4,7%* -6,9%* -4,3%* -2,8% -5,9%* -0,5% -5,0%* 1,3% -9,2%* -5,0%* - 0,0% -21,1%* -21,0%* -21,2%* -21,0%* -18,1%* -1,8%* 

EX - 28 -19,7%* -25,6%* -7,7%* -8,9%* -9,0%* -2,7% -3,3%* -9,3%* -6,7%* -3,7%* -5,6%* -5,1%* -6,8%* -5,2%* -3,3%* -1,6% -4,8%* -6,9%* -4,3%* -2,8%* -5,9%* -0,6% -5,0%* 1,2% -9,2%* -5,0%* 0,0% - -21,1%* -21,0%* -21,2%* -21,1%* -18,1%* -1,8% 

EX - 29 1,4% -4,5%* 13,4%* 12,2%* 12,1%* 18,4%* 17,8%* 11,8%* 14,4%* 17,4%* 15,5%* 16,0%* 14,3%* 15,9%* 17,8%* 19,5%* 16,3%* 14,2%* 16,8%* 18,3%* 15,2%* 20,5%* 16,1%* 22,3%* 11,8%* 16,1%* 21,1%* 21,1%* - 0,0% -0,1% 0,0% 3,0%* 19,3%* 

EX - 30 1,3% -4,6%* 13,4%* 12,2%* 12,0%* 18,4%* 17,7%* 11,8%* 14,4%* 17,3%* 15,5%* 16,0%* 14,2%* 15,9%* 17,8%* 19,4%* 16,3%* 14,1%* 16,7%* 18,2%* 15,1%* 20,5%* 16,0%* 22,3%* 11,8%* 16,0%* 21,0%* 21,0%* 0,0% - -0,2% 0,0% 3,0%* 19,2%* 

EX - 31 1,5% -4,4%* 13,5%* 12,3%* 12,2%* 18,5%* 17,9%* 11,9%* 14,5%* 17,5%* 15,6%* 16,1%* 14,4%* 16,1%* 17,9%* 19,6%* 16,5%* 14,3%* 16,9%* 18,4%* 15,3%* 20,6%* 16,2%* 22,5%* 12,0%* 16,2%* 21,2%* 21,2%* 0,1% 0,2% - 0,1% 3,1% 19,4%* 

EX - 32 1,4% -4,5%* 13,4%* 12,2%* 12,1%* 18,4%* 17,8%* 11,8%* 14,4%* 17,4%* 15,5%* 16,0%* 14,3%* 15,9%* 17,8%* 19,5%* 16,3%* 14,2%* 16,8%* 18,3%* 15,1%* 20,5%* 16,0%* 22,3%* 11,8%* 16,0%* 21,0%* 21,1%* 0,0% 0,0% -0,1% - 3,0% 19,3%* 

EX - 33 -1,6% -7,5%* 10,4%* 9,2%* 9,1%* 15,4%* 14,8%* 8,8%* 11,4%* 14,4%* 12,5%* 13,0%* 11,3%* 12,9%* 14,8%* 16,5%* 13,3%* 11,2%* 13,8%* 15,3%* 12,2%* 17,5%* 13,1%* 19,3%* 8,8%* 13,1%* 18,1%* 18,1%* -3,0%* -3,0%* -3,1% -3,0% - 16,3%* 

EX - 34 -17,9%* -23,8%* -5,9%* -7,1%* -7,2%* -0,9% -1,5% -7,4%* -4,9%* -1,9% -3,8%* -3,2%* -5,0%* -3,3%* -1,5% 0,2% -2,9%* -5,1%* -2,5%* -1,0% -4,1%* 1,3% -3,2%* 3,1%* -7,4%* -3,2%* 1,8%* 1,8% -19,3%* -19,2%* -19,4%* -19,3%* -16,3%* - 

 


